Discontinuous approximation of viscous two-phase flow in heterogeneous porous media

作者: Raimund Bürger , Sarvesh Kumar , Kenettinkara Sudarshan Kumar , Ricardo Ruiz-Baier

DOI: 10.1016/J.JCP.2016.05.043

关键词:

摘要: Runge-Kutta Discontinuous Galerkin (RKDG) and Finite Volume Element (DFVE) methods are applied to a coupled flow-transport problem describing the immiscible displacement of viscous incompressible fluid in non-homogeneous porous medium. The model consists nonlinear pressure-velocity equations (assuming Brinkman flow) hyperbolic equation governing mass balance (saturation equation). conservation properties inherent finite volume-based motivate DFVE scheme for approximation flow combination with RKDG method spatio-temporal discretization saturation equation. stability uncoupled schemes is analyzed, several numerical experiments illustrate robustness method.

参考文章(50)
R. D. Lazarov, S. Z. Tomov, Adaptive finite volume element method for convection-diffusion-reaction problems in 3-D Scientific computing and applications. pp. 91- 106 ,(2001)
Holger Class, Rainer Helmig, Jennifer Niessner, Ulrich Ölmann, Multiphase Processes in Porous Media Springer Berlin Heidelberg. pp. 45- 82 ,(2006) , 10.1007/978-3-540-34961-7_2
Raimund Bürger, Sarvesh Kumar, Ricardo Ruiz-Baier, Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation Journal of Computational Physics. ,vol. 299, pp. 446- 471 ,(2015) , 10.1016/J.JCP.2015.07.020
Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier, Pablo Venegas, New fully-mixed finite element methods for the Stokes–Darcy coupling Computer Methods in Applied Mechanics and Engineering. ,vol. 295, pp. 362- 395 ,(2015) , 10.1016/J.CMA.2015.07.007
Verónica Anaya, David Mora, Ricardo Oyarzúa, Ricardo Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem Numerische Mathematik. ,vol. 133, pp. 781- 817 ,(2016) , 10.1007/S00211-015-0758-X
Dmitri Kuzmin, Slope limiting for discontinuous Galerkin approximations with a possibly non‐orthogonal Taylor basis International Journal for Numerical Methods in Fluids. ,vol. 71, pp. 1178- 1190 ,(2013) , 10.1002/FLD.3707
Garrett E. Barter, David L. Darmofal, Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation Journal of Computational Physics. ,vol. 229, pp. 1810- 1827 ,(2010) , 10.1016/J.JCP.2009.11.010
Adimurthi, G.D. Veerappa Gowda, Jérôme Jaffré, The DFLU flux for systems of conservation laws Journal of Computational and Applied Mathematics. ,vol. 247, pp. 102- 123 ,(2013) , 10.1016/J.CAM.2012.12.025