How Long is the Way from Chaos to Turbulence

作者: George M. Zaslavsky

DOI: 10.1007/978-3-0348-8585-0_11

关键词:

摘要: Some problems of dynamical chaos are discussed in their relation to the problem turbulent motion. They include symmetry patterns preturbulent state, space-time chaos, Lagrangian turbulence, anomalous transport, intermittency and others. All them considered from a background.

参考文章(42)
G. M. Zaslavsky, Dynamical Theory and Mixing Advances in Turbulence 3. pp. 243- 256 ,(1991) , 10.1007/978-3-642-84399-0_28
Michael Ghil, Società italiana di fisica, Giorgio Parisi, Roberto Benzi, Turbulence and predictability in geophysical fluid dynamics and climate dynamics North-Holland. ,(1985)
G. E. Uhlenbeck, Jan de Boer, Studies in statistical mechanics ,(1962)
H. K. Moffatt, Topological Fluid Mechanics Proceedings of the IUTAM Symposium. pp. 823- ,(1990)
K J Whiteman, Invariants and stability in classical mechanics Reports on Progress in Physics. ,vol. 40, pp. 1033- 1069 ,(1977) , 10.1088/0034-4885/40/9/002
Yu.L. Bolotin, V.Yu. Gonchar, V.N. Tarasov, N.A. Chekanov, The transition “regularity-chaos-regularity” and statistical properties of wave functions Physics Letters A. ,vol. 144, pp. 459- 461 ,(1990) , 10.1016/0375-9601(90)90514-O
M.N. Rosenbluth, R.Z. Sagdeev, J.B. Taylor, G.M. Zaslavski, DESTRUCTION OF MAGNETIC SURFACES BY MAGNETIC FIELD IRREGULARITIES Nuclear Fusion. ,vol. 6, pp. 297- 300 ,(1966) , 10.1088/0029-5515/6/4/008
Lei Yu, Edward Ott, Qi Chen, Transition to chaos for random dynamical systems Physical Review Letters. ,vol. 65, pp. 2935- 2938 ,(1990) , 10.1103/PHYSREVLETT.65.2935