Optimal error estimates of both coupled and two-grid decoupled methods for a mixed Stokes–Stokes model

作者: Yuhong Zhang , Haibiao Zheng , Yanren Hou , Li Shan

DOI: 10.1016/J.APNUM.2018.01.022

关键词:

摘要: Abstract In this paper, we provide a coupled algorithm and two-grid decoupled for mixed Stokes–Stokes model, which is by nonlinear interface transmission condition. The to discretize the model directly standard finite element method. For algorithm, first solve on coarse grid, update solution fine grid two separated Stokes problems. Under hypothesis about regularity of analytical solutions, optimal error estimates algorithms are achieved. Several numerical tests given verify our theoretical results.

参考文章(27)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Jean Roberts, Jean-Marie Thomas, Mixed and hybrid finite element methods Springer-Verlag. ,(1991) , 10.1007/978-1-4612-3172-1
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Jeffrey M. Connors, Jason S. Howell, William J. Layton, Decoupled Time Stepping Methods for Fluid-Fluid Interaction SIAM Journal on Numerical Analysis. ,vol. 50, pp. 1297- 1319 ,(2012) , 10.1137/090773362
Mingchao Cai, Mo Mu, A multilevel decoupled method for a mixed Stokes/Darcy model Journal of Computational and Applied Mathematics. ,vol. 236, pp. 2452- 2465 ,(2012) , 10.1016/J.CAM.2011.12.003
Jim Douglas, Todd Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions Numerische Mathematik. ,vol. 20, pp. 213- 237 ,(1973) , 10.1007/BF01436565