On the Invariant Subspace Problem

作者: M. Sababheh , A. Yousef , R. Khalil

DOI: 10.1007/S40840-015-0135-Z

关键词:

摘要: In an attempt to solve the invariant subspace problem, we introduce a certain orthonormal basis of Hilbert spaces, and prove that bounded linear operator on space must have once this fulfills conditions. Ultimately, is used show every sum shift upper triangular operators, each which having subspace.

参考文章(7)
C. J. Read, A Solution to the Invariant Subspace Problem on the Space l 1 Bulletin of the London Mathematical Society. ,vol. 17, pp. 305- 317 ,(1985) , 10.1112/BLMS/17.4.305
Arne Beurling, On two problems concerning linear transformations in hilbert space Acta Mathematica. ,vol. 81, pp. 239- 255 ,(1949) , 10.1007/BF02395019
Isabelle Chalendar, Jonathan R. Partington, An overview of some recent developments on the Invariant Subspace Problem Concrete Operators. ,vol. 1, pp. 1- 10 ,(2012) , 10.2478/CONOP-2012-0001
N. Aronszajn, K. T. Smith, Invariant Subspaces of Completely Continuous Operators The Annals of Mathematics. ,vol. 60, pp. 345- ,(1954) , 10.2307/1969637
Per Enflo, On the invariant subspace problem for Banach spaces Acta Mathematica. ,vol. 158, pp. 213- 313 ,(1987) , 10.1007/BF02392260
Allen Bernstein, Abraham Robinson, SOLUTION OF AN INVARIANT SUBSPACE PROBLEM OF K. T. SMITH AND P. R. HALMOS Pacific Journal of Mathematics. ,vol. 16, pp. 421- 431 ,(1966) , 10.2140/PJM.1966.16.421
B. S. Yadav, The Present State and Heritages of the Invariant Subspace Problem Milan Journal of Mathematics. ,vol. 73, pp. 289- 316 ,(2005) , 10.1007/S00032-005-0048-7