Approximate analytic solutions for singular non-linear oscillators

作者: K.B. Bota , R.E. Mickens

DOI: 10.1016/0022-460X(84)90585-6

关键词:

摘要: Mickens (1981, 1984) has considered analytic techniques for obtaining approximate solutions to one-dimensional nonlinear oscillatory systems x(double-dot) + x = lambda f(x, x/dot/, lambda) where is a small positive parameter and f polynomial function of its arguments. However, in certain cases there interest the analysis physical which singular finite values or x(dot). The present investigation concerned with use existing schemes obtain differential equations.

参考文章(4)
Stephen S. Walker, J. Alvin Connelly, A new negative resistance oscillator model Circuits Systems and Signal Processing. ,vol. 2, pp. 213- 238 ,(1983) , 10.1007/BF01599160
R.E. Mickens, Comments on the method of harmonic balance Journal of Sound and Vibration. ,vol. 94, pp. 456- 460 ,(1984) , 10.1016/S0022-460X(84)80025-5
R.E. Mickens, Perturbation solution of a highly non-linear oscillation equation Journal of Sound and Vibration. ,vol. 68, pp. 153- 155 ,(1980) , 10.1016/0022-460X(80)90459-9
P. M. Mathews, M. Lakshmanan, On a unique nonlinear oscillator Quarterly of Applied Mathematics. ,vol. 32, pp. 215- 218 ,(1974) , 10.1090/QAM/430422