How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian

作者: L Baratchart , J Leblond , F Mandréa , E B Saff

DOI: 10.1088/0266-5611/15/1/012

关键词:

摘要: We exhibit new links between approximation theory in the complex domain and a family of inverse problems for 2D Laplacian related to non-destructive testing.

参考文章(23)
Peter L. Duren, Theory of H[p] spaces Academic Press. ,(1970)
Nicholas Young, An introduction to Hilbert space ,(1988)
Walter Rudin, Real and complex analysis ,(1966)
Vadim M Adamjan, Damir Z Arov, Mark Grigorievich Krein, None, ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM Mathematics of The Ussr-sbornik. ,vol. 15, pp. 31- 73 ,(1971) , 10.1070/SM1971V015N01ABEH001531
L. Baratchart, J. Leblond, J. R. Partington, Hardy approximation toL ∞ functions on subsets of the circle Constructive Approximation. ,vol. 12, pp. 423- 435 ,(1996) , 10.1007/BF02433052
L. Baratchart, J. Leblond, J. R. Partington, Problems of Adamjan—Arov—Krein Type on Subsets of the Circle and Minimal Norm Extensions Constructive Approximation. ,vol. 16, pp. 333- 357 ,(2000) , 10.1007/S003659910015
Alphonse P. Magnus, Toeplitz matrix techniques and convergence of complex weight Pade´ approximants Journal of Computational and Applied Mathematics. ,vol. 19, pp. 23- 38 ,(1987) , 10.1016/0377-0427(87)90168-3