The traveling salesman problem in graphs with 3-edge cutsets

作者: G. Cornuéjols , D. Naddef , W. Pulleyblank

DOI: 10.1145/3149.3154

关键词:

摘要: This paper analyzes decomposition properties of a graph that, when they occur, permit polynomial solution the traveling salesman problem and description polytope by system linear equalities inequalities. The central notion is that 3-edge cutset, namely, set 3 edges removed, disconnects graph. Conversely, our approach can be used to construct classes graphs for which there exists algorithm problem. illustrated on two examples, Halin prismatic graphs.

参考文章(25)
Maciej M. Sysło, Andrzej Proskurowski, On Halin graphs Springer, Berlin, Heidelberg. pp. 248- 256 ,(1983) , 10.1007/BFB0071635
Achim Bachem, Martin Grötschel, New aspects of polyhedral theory ,(1982)
Martin Grötschel, Manfred W. Padberg, On the symmetric travelling salesman problem II: Lifting theorems and facets Mathematical Programming. ,vol. 16, pp. 281- 302 ,(1979) , 10.1007/BF01582117
Gérard Cornuéjols, William Pulleyblank, The Travelling Salesman Polytope and {0, 2}-Matchings North-holland Mathematics Studies. ,vol. 66, pp. 27- 55 ,(1982) , 10.1016/S0304-0208(08)72442-3
George J Minty, On maximal independent sets of vertices in claw-free graphs Journal of Combinatorial Theory, Series B. ,vol. 28, pp. 284- 304 ,(1980) , 10.1016/0095-8956(80)90074-X
Mouloud Boulala, Jean-Pierre Uhry, Polytope des independants d'un graphe serie-parallele Discrete Mathematics. ,vol. 27, pp. 225- 243 ,(1979) , 10.1016/0012-365X(79)90160-2
Michael Held, Richard M. Karp, The Traveling-Salesman Problem and Minimum Spanning Trees Operations Research. ,vol. 18, pp. 1138- 1162 ,(1970) , 10.1287/OPRE.18.6.1138
M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization Combinatorica. ,vol. 1, pp. 169- 197 ,(1981) , 10.1007/BF02579273
H. Donald Ratliff, Arnon S. Rosenthal, Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem Operations Research. ,vol. 31, pp. 507- 521 ,(1983) , 10.1287/OPRE.31.3.507