A contribution to Optimal Transport on incomparable spaces

作者: Titouan Vayer

DOI:

关键词:

摘要: Le Transport Optimal est une theorie permettant de definir des notions geometriques distance entre distributions probabilite et trouver correspondances, relations, ensembles points. De cette theorie, a la frontiere les mathematiques l'optimisation, decoule nombreuses applications en machine learning. Cette these propose d'etudier le scenario, complexe, dans lequel differentes donnees appartiennent espaces incomparables}. En particulier nous abordons questions suivantes : comment appliquer transport optimal graphes, structurees ? Comment l'adapter lorsque sont variees ne font pas partie d'un meme espace metrique un ensemble d'outils pour ces differents cas. Un important volet notamment consacre l'etude Gromov-Wasserstein dont proprietes permettent d'interessants problemes sur incomparables. Plus largement, analysons outils proposes, etablissons solutions algorithmiques calculer etudions leur applicabilite nombreux scenarii learning qui couvrent, notamment, classification, simplification, partitionnement structurees, ainsi que l'adaptation domaines heterogenes.

参考文章(235)
Martin Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization international conference on machine learning. pp. 427- 435 ,(2013)
Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, Thomas Hofmann, Gükhan H. Bakir, S. V. N. Vishwanathan, Predicting Structured Data (Neural Information Processing) The MIT Press. ,(2007)
Colin Goodall, Procrustes methods in the statistical analysis of shape Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 285- 321 ,(1991) , 10.1111/J.2517-6161.1991.TB01825.X
Mohamed Nadif, Gérard Govaert, Algorithms for Model-based Block Gaussian Clustering. DMIN. pp. 536- 542 ,(2008)
Sridhar Mahadevan, Chang Wang, Heterogeneous domain adaptation using manifold alignment international joint conference on artificial intelligence. pp. 1541- 1546 ,(2011) , 10.5591/978-1-57735-516-8/IJCAI11-259
Sridhar Mahadevan, Chang Wang, Manifold alignment without correspondence international joint conference on artificial intelligence. pp. 1273- 1278 ,(2009)
Leonidas Guibas, Adrian Butscher, Justin Solomon, Raif Rustamov, Wasserstein Propagation for Semi-Supervised Learning international conference on machine learning. pp. 306- 314 ,(2014)
Tomaso Poggio, Charlie Frogner, Hossein Mobahi, Chiyuan Zhang, Mauricio Araya-Polo, Learning with a Wasserstein loss neural information processing systems. ,vol. 28, pp. 2053- 2061 ,(2015)
Kilian Weinberger, Matt Kusner, Nicholas Kolkin, Yu Sun, From Word Embeddings To Document Distances international conference on machine learning. pp. 957- 966 ,(2015)