Obtaining Fault Tolerant Multilayer Perceptrons Using an Explicit Regularization

作者: Jose L. Bernier , J. Ortega , I. Rojas , E. Ros , A. Prieto

DOI: 10.1023/A:1009698206772

关键词:

摘要: When the learning algorithm is applied to a MLP structure, different solutions for weight values can be obtained if parameters of rule or initial conditions are changed. Those present similar performance with respect learning, but they differ in other aspects, particular, fault tolerance against perturbations. In this paper, backpropagation that maximizes proposed. The presented explicitly adds new term related mean square error degradation presence deviations order minimize degradation. results demonstrate efficiency proposed here comparison algorithm.

参考文章(6)
I. Rojas, A. Prieto, Jose L. Bernier, J. Ortega, M. M. Rodrì'guez, An Accurate Measure for Multilayer Perceptron Tolerance to Weight Deviations Neural Processing Letters. ,vol. 10, pp. 121- 130 ,(1999) , 10.1023/A:1018733418248
PETER J. EDWARDS, ALAN F. MURRAY, CAN DETERMINISTIC PENALTY TERMS MODEL THE EFFECTS OF SYNAPTIC WEIGHT NOISE ON NETWORK FAULT-TOLERANCE? International Journal of Neural Systems. ,vol. 6, pp. 401- 416 ,(1995) , 10.1142/S0129065795000263
M.J. Carter, B.E. Segee, Comparative fault tolerance of parallel distributed processing networks IEEE Transactions on Computers. ,vol. 43, pp. 1323- 1329 ,(1994) , 10.1109/12.324565
Peter J. Edwards, Alan F. Murray, Toward optimally distributed computation Neural Computation. ,vol. 10, pp. 987- 1005 ,(1998) , 10.1162/089976698300017593
Jin Young Choi, Chong-Ho Choi, Sensitivity analysis of multilayer perceptron with differentiable activation functions IEEE Transactions on Neural Networks. ,vol. 3, pp. 101- 107 ,(1992) , 10.1109/72.105422
D.S. Phatak, I. Koren, Complete and partial fault tolerance of feedforward neural nets IEEE Transactions on Neural Networks. ,vol. 6, pp. 446- 456 ,(1995) , 10.1109/72.363479