Resource-Aware Harris Corner Detection Based on Adaptive Pruning

作者: Johny Paul , Walter Stechele , Manfred Kröhnert , Tamim Asfour , Benjamin Oechslein

DOI: 10.1007/978-3-319-04891-8_1

关键词:

摘要: Corner-detection techniques are being widely used in computer vision — for example object recognition to find suitable candidate points feature registration and matching. Most computer-vision applications have operate on real-time video sequences, hence maintaining a consistent throughput high accuracy important constrains that ensure high-quality recognition. A can be achieved by exploiting the inherent parallelism within algorithm massively parallel architectures like many-core processors. However, accelerating such algorithms CPUs offers several challenges as speedup depends instantaneous load processing elements. In this work, we present new resource-aware Harris corner-detection The novel adapt itself dynamically varying processor process frame predefined time interval. results show 19% improvement an 18% accuracy.

参考文章(22)
Adam Schmidt, Marek Kraft, Andrzej Kasiński, An Evaluation of Image Feature Detectors and Descriptors for Robot Navigation Computer Vision and Graphics. pp. 251- 259 ,(2010) , 10.1007/978-3-642-15907-7_31
Edward Rosten, Tom Drummond, Machine learning for high-speed corner detection european conference on computer vision. pp. 430- 443 ,(2006) , 10.1007/11744023_34
Ryszard Tadeusiewicz, Leszek J. Chmielewski, Konrad Wojciechowski, Leonard Bolc, Computer Vision and Graphics ,(2009)
Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-Preikschat, Gregor Snelting, Invasive Computing: An Overview Multiprocessor System-on-Chip. pp. 241- 268 ,(2011) , 10.1007/978-1-4419-6460-1_11
Timothy G Mattson, Rob F Van der Wijngaart, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, Saurabh Dighe, None, The 48-core SCC Processor: the Programmer's View ieee international conference on high performance computing data and analytics. pp. 1- 11 ,(2010) , 10.1109/SC.2010.53
Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Leung, John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang Miao, Carl Ramey, David Wentzlaff, Walker Anderson, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan Montenegro, Jay Stickney, John Zook, TILE64 - Processor: A 64-Core SoC with Mesh Interconnect international solid-state circuits conference. pp. 88- 598 ,(2008) , 10.1109/ISSCC.2008.4523070
Arturo Gil, Oscar Martinez Mozos, Monica Ballesta, Oscar Reinoso, A comparative evaluation of interest point detectors and local descriptors for visual SLAM machine vision applications. ,vol. 21, pp. 905- 920 ,(2010) , 10.1007/S00138-009-0195-X
Meiqing Wu, Nirmala Ramakrishnan, Siew-Kei Lam, Thambipillai Srikanthan, Low-complexity pruning for accelerating corner detection international symposium on circuits and systems. pp. 1684- 1687 ,(2012) , 10.1109/ISCAS.2012.6271582
S. Alkaabi, F. Deravi, Candidate pruning for fast corner detection Electronics Letters. ,vol. 40, pp. 18- 19 ,(2004) , 10.1049/EL:20040023
Stephen M Smith, J Michael Brady, None, SUSAN—A New Approach to Low Level Image Processing International Journal of Computer Vision. ,vol. 23, pp. 45- 78 ,(1997) , 10.1023/A:1007963824710