Estimating Quantum Entropy

作者: Jayadev Acharya , Ibrahim Issa , Nirmal V. Shende , Aaron B. Wagner

DOI: 10.1109/JSAIT.2020.3015235

关键词:

摘要: The entropy of a quantum system is measure its randomness, and has applications in measuring entanglement. We study the problem estimating von Neumann entropy, $S(\rho)$ , Renyi $S_{\alpha }(\rho)$ an unknown mixed state $\rho $ $d$ dimensions, given access to independent copies . provide algorithms with copy complexity $O(d^{2/\alpha })$ for $\alpha $O(d^{2})$ non-integral >1$ These bounds are at least quadratic which order dependence on number required entire For integral other hand, we algorithm sub-quadratic $O(d^{2-2/\alpha show optimality by providing matching lower bound.

参考文章(34)
Leah Henderson, Measuring Quantum Entanglement Springer Netherlands. pp. 137- 152 ,(2002) , 10.1007/978-94-010-0385-8_9
Mark M. Wilde, Quantum Information Theory ,(2017)
Stéphane Boucheron, Gábor Lugosi, Pascal Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence ,(2013)
Vladimir Ivanov, Grigori Olshanski, Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams Symmetric Functions 2001: Surveys of Developments and Perspectives. pp. 93- 151 ,(2002) , 10.1007/978-94-010-0524-1_3
Andrei Okounkov, Grigori Olshanski, Shifted Schur Functions arXiv: Quantum Algebra. ,(1996)
Alain Lascoux, S. Ole Warnaar, Branching rules for symmetric functions and sln basic hypergeometric series Advances in Applied Mathematics. ,vol. 46, pp. 424- 456 ,(2011) , 10.1016/J.AAM.2010.01.012
Ryan O'Donnell, John Wright, Efficient quantum tomography II symposium on the theory of computing. pp. 899- 912 ,(2016) , 10.1145/2897518.2897544
Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman, Minimax Estimation of Functionals of Discrete Distributions IEEE Transactions on Information Theory. ,vol. 61, pp. 2835- 2885 ,(2015) , 10.1109/TIT.2015.2412945
Ingram Olkin, Barry C. Arnold, Albert W. Marshall, Inequalities: Theory of Majorization and Its Applications ,(2011)