A Sequential Bayesian Alternative to the Classical Parallel Fuzzy Clustering Model

作者: Arash Abadpour

DOI:

关键词:

摘要: Unsupervised separation of a group datums particular type, into clusters which are homogenous within problem class-specific context, is classical research still actively visited. Since the 1960s, community has converged class clustering algorithms, utilizes concepts such as fuzzy/probabilistic membership well possibilistic and credibilistic degrees. In spite differences in formalizations approaches to loss assessment different significant majority works literature utilize sum datum-to-cluster distances for all clusters. essence, this double summation basis on additional features outlier rejection robustification built. work, we revisit concept suggest an alternative model function sequentially. We exhibit that notion being emerges mathematical developed paper. Then, provide generic new framework. fact, independent any datum or cluster models robust function. An important aspect work modeling entirely based Bayesian inference framework avoid engineering terms heuristics intuitions. then develop solution strategy functions Alternating Optimization pipeline.

参考文章(105)
JAMES C. BEZDEK, A Physical Interpretation of Fuzzy ISODATA Morgan Kaufmann. pp. 615- 616 ,(1993) , 10.1016/B978-1-4832-1450-4.50065-1
F. Klawonn, R. Kruse, H. Timm, Fuzzy Shell Cluster Analysis Springer, Vienna. pp. 105- 119 ,(1997) , 10.1007/978-3-7091-2668-4_7
Cheng-Hsuan Li, Bor-Chen Kuo, Wen-Chun Huang, Chih-Cheng Hung, A Novel Fuzzy Weighted C-Means Method for Image Classification International Journal of Fuzzy Systems. ,vol. 10, pp. 168- 173 ,(2008) , 10.30000/IJFS.200809.0005
Frank Klawonn, Frank Höppner, What Is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier Advances in Intelligent Data Analysis V. pp. 254- 264 ,(2003) , 10.1007/978-3-540-45231-7_24
Pierpaolo D'urso, Fuzzy Clustering of Fuzzy Data John Wiley & Sons, Ltd. pp. 155- 192 ,(2007) , 10.1002/9780470061190.CH8
Jose Valente de Oliveira, Witold Pedrycz, Fundamentals of Fuzzy Clustering Advances in Fuzzy Clustering and its Applications. pp. 1- 30 ,(2007) , 10.1002/9780470061190.CH1
L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm international conference of the ieee engineering in medicine and biology society. ,vol. 1, pp. 724- 726 ,(2003) , 10.1109/IEMBS.2003.1279866
Susana Nascimento, Boris Mirkin, Fernando Moura-Pires, Multiple Prototype Model for Fuzzy Clustering intelligent data analysis. pp. 269- 280 ,(1999) , 10.1007/3-540-48412-4_23
N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering model Proceedings of 6th International Fuzzy Systems Conference. ,vol. 1, pp. 11- 21 ,(1997) , 10.1109/FUZZY.1997.616338
Nicolaos B. Karayiannis, Mary M. Randolph-Gips, Non-Euclidean c-means clustering algorithms intelligent data analysis. ,vol. 7, pp. 405- 425 ,(2003) , 10.3233/IDA-2003-7503