ELLIPTIC EIGENVALUE PROBLEMS AND UNBOUNDED CONTINUA OF POSITIVE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION

作者: José M. Fraile , Pablo Koch Medina , Julián López-Gómez , Sandro Merino

DOI: 10.1006/JDEQ.1996.0071

关键词:

摘要: Abstract We derive a result on the limit of certain sequences principal eigenvalues associated with some elliptic eigenvalue problems. This is then used to give complete description global structure curves positive steady states parameter dependent diffusive version classical logistic equation. In particular, we characterize bifurcation values from infinity states. The stability as well asymptotic behaviour solutions also discussed.

参考文章(13)
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
Peter Hess, Tosio Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function Communications in Partial Differential Equations. ,vol. 5, pp. 999- 1030 ,(1980) , 10.1080/03605308008820162
Tosio Kato, Superconvexity of the spectral radius, and convexity of the spectral bound and the type Mathematische Zeitschrift. ,vol. 180, pp. 265- 273 ,(1982) , 10.1007/BF01318910
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
Michael G. Crandall, Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, itand linearized stability Archive for Rational Mechanics and Analysis. ,vol. 52, pp. 161- 180 ,(1973) , 10.1007/BF00282325
K.J Brown, P.C Dunne, R.A Gardner, A semilinear parabolic system arising in the theory of superconductivity Journal of Differential Equations. ,vol. 40, pp. 232- 252 ,(1981) , 10.1016/0022-0396(81)90020-6
H. Berestycki, L. Nirenberg, S. R. S. Varadhan, The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains Communications on Pure and Applied Mathematics. ,vol. 47, pp. 47- 92 ,(1994) , 10.1002/CPA.3160470105