Convex Optimization in Normed Spaces: Theory, Methods and Examples

作者: Juan Peypouquet

DOI:

关键词:

摘要: Basic Functional Analysis.- Existence of Minimizers.- Convex Analysis and Subdifferential Calculus.- Examples.- Problem-solving Strategies.- Keynote Iterative Methods.

参考文章(92)
Jonathan M. Borwein, Adrian S. Lewis, Convex analysis and nonlinear optimization ,(2006)
Patrick L. Combettes, Heinz H. Bauschke, Convex Analysis and Monotone Operator Theory in Hilbert Spaces ,(2011)
Jonathan Borwein, A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY Pacific Journal of Mathematics. ,vol. 103, pp. 307- 314 ,(1982) , 10.2140/PJM.1982.103.307
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
George Bachman, Lawrence Narici, Edward Beckenstein, Fourier and Wavelet Analysis ,(1999)
M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space Mathematical Programming. ,vol. 87, pp. 189- 202 ,(2000) , 10.1007/S101079900113
Hedy Attouch, Giuseppe Buttazzo, Gérard Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization Society for Industrial and Applied Mathematics. ,vol. 6, pp. 1- 646 ,(2006) , 10.1137/1.9780898718782
Gerald B. Folland, Fourier analysis and its applications ,(1992)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Fundamentals of Convex Analysis ,(2018)
Pierre Arnaud Raviart, Jean-Marie Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles Masson. ,(1983)