Controlling Nonlinear Systems by Flatness

作者: M. Fliess , J. Levine , P. Martin , F. Ollivier , P. Rouchon

DOI: 10.1007/978-1-4612-4120-1_7

关键词:

摘要: Many nonlinear control systems encountered in practice are (differentially) flat, i.e., linearizable by a special type of dynamic feedbacks called endogenous. The main feature differential flatness is the presence fictitious output, or linearizing, y = (y 1,…,y m ), such that (i) every system variable may be expressed as function components and finite number their time-derivatives; (ii) every component variables time-derivatives; and (iii) the equal to independent input channels.

参考文章(42)
S. Shankar Sastry, Dawn Marie Tilbury, Exterior differential systems and nonholonomic motion planning University of California, Berkeley. ,(1994)
V. V. Lychagin, A. M. Vinogradov, I. S. Krasilʹshchik, Geometry of jet spaces and nonlinear partial differential equations Gordon and Breach Science Publishers. ,(1986)
Michel Fliess, Jean Lévine, Philippe Martin, Pierre Rouchon, A lie-bäcklund approach to dynamic feedback equivalence and flatness Springer Berlin Heidelberg. pp. 245- 268 ,(1996) , 10.1007/BFB0027569
Philippe Martin (enseignant en mathématique et automatique).), Contribution a l'etude des systemes differentiellement plats École Nationale Supérieure des Mines de Paris. ,(1992)
Paul Appell, Traité de mécanique rationnelle Gauthier. ,(1911)
Witold. Respondek, Bronisław. Jakubczyk, Tadeusz. Rzeżuchowski, Geometry in nonlinear control and differential inclusions Banach Center Publications. ,(1995)
J. Levine, P. Rouchon, G. Yuan, C. Grebogi, B. R. Hunt, E. Kostelich, E. Ott, J. A. Yorke, On the control of US Navy cranes european control conference. pp. 2829- 2833 ,(1997) , 10.23919/ECC.1997.7082539
Jean-Baptiste Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization Banach Center Publications. ,vol. 32, pp. 319- 339 ,(1995) , 10.4064/-32-1-319-339