AI for Beyond 5G Networks: A Cyber-Security Defense or Offense Enabler?

作者: Chafika Benzaid , Tarik Taleb

DOI: 10.1109/MNET.011.2000088

关键词:

摘要: … Indeed, AI has the potential of uncovering hidden patterns from a large set of time-varying multi… Thus, a potential research direction is to investigate how those countermeasures could be …

参考文章(14)
Víctor J. Yohai, Ricardo A. Maronna, R. Douglas Martin, Robust Statistics: Theory and Methods ,(2006)
Varun Chandola, Arindam Banerjee, Vipin Kumar, Anomaly detection: A survey ACM Computing Surveys. ,vol. 41, pp. 15- ,(2009) , 10.1145/1541880.1541882
Rida Khatoun, Youcef Begriche, Lyes Khoukhi, A statistical detection mechanism for node misbehaviours in wireless mesh networks new technologies mobility and security. ,vol. 31, pp. 23- 35 ,(2017) , 10.1504/IJAHUC.2019.099637
Massimiliano Albanese, Sushil Jajodia, Sridhar Venkatesan, Defending from Stealthy Botnets Using Moving Target Defenses ieee symposium on security and privacy. ,vol. 16, pp. 92- 97 ,(2018) , 10.1109/MSP.2018.1331034
Martin Husak, Jana Komarkova, Elias Bou-Harb, Pavel Celeda, Survey of Attack Projection, Prediction, and Forecasting in Cyber Security IEEE Communications Surveys and Tutorials. ,vol. 21, pp. 640- 660 ,(2019) , 10.1109/COMST.2018.2871866
Janne Ali-Tolppa, Szilard Kocsis, Benedek Schultz, Levente Bodrog, Marton Kajo, SELF-HEALING AND RESILIENCE IN FUTURE 5G COGNITIVE AUTONOMOUS NETWORKS 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K). pp. 1- 8 ,(2018) , 10.23919/ITU-WT.2018.8598115
Bilal Hussain, Qinghe Du, Pinyi Ren, Deep Learning-Based Big Data-Assisted Anomaly Detection in Cellular Networks 2018 IEEE Global Communications Conference (GLOBECOM). pp. 1- 6 ,(2018) , 10.1109/GLOCOM.2018.8647366
Wuyang Zhang, Russell Ford, Joonyoung Cho, Charlie Jianzhong Zhang, Yanyong Zhang, Dipankar Raychaudhuri, Self-Organizing Cellular Radio Access Network with Deep Learning conference on computer communications workshops. pp. 429- 434 ,(2019) , 10.1109/INFCOMW.2019.8845280