Angiogenesis: An Adaptive Dynamic Biological Patterning Problem

作者: Timothy W. Secomb , Jonathan P. Alberding , Richard Hsu , Mark W. Dewhirst , Axel R. Pries

DOI: 10.1371/JOURNAL.PCBI.1002983

关键词:

摘要: Formation of functionally adequate vascular networks by angiogenesis presents a problem in biological patterning. Generated without predetermined spatial patterns, must develop hierarchical tree-like structures for efficient convective transport over large distances, combined with dense space-filling meshes short diffusion distances to every point the tissue. Moreover, be capable restructuring response changing functional demands interruption blood flow. Here, theoretical simulations based on experimental data are used demonstrate that this patterning can solved through over-abundant stochastic generation vessels growth factor generated hypoxic tissue regions, parallel refinement structural adaptation and pruning. Essential mechanisms patterns identified impairments properties resulting from defects these predicted. The results provide framework understanding network formation normal or pathological conditions predicting effects therapies targeting angiogenesis.

参考文章(52)
Aleksander S. Popel, Theory of oxygen transport to tissue. Critical Reviews in Biomedical Engineering. ,vol. 17, pp. 257- 321 ,(1989)
A. R. Pries, B. Reglin, T. W. Secomb, Structural adaptation of microvascular networks: functional roles of adaptive responses. American Journal of Physiology-heart and Circulatory Physiology. ,vol. 281, ,(2001) , 10.1152/AJPHEART.2001.281.3.H1015
A. R. Pries, K. Ley, P. Gaehtgens, Generalization of the Fahraeus principle for microvessel networks American Journal of Physiology-heart and Circulatory Physiology. ,vol. 251, ,(1986) , 10.1152/AJPHEART.1986.251.6.H1324
Frank Moss, Peter Vaughan Elsmere McClintock, Experiments and simulations Cambridge University Press. ,(1989)
Peter Carmeliet, Rakesh K. Jain, Angiogenesis in cancer and other diseases Nature. ,vol. 407, pp. 249- 257 ,(2000) , 10.1038/35025220
Axel R Pries, Timothy W Secomb, Blood Flow in Microvascular Networks Comprehensive Physiology. pp. 3- 36 ,(2011) , 10.1016/B978-0-12-374530-9.00001-2
Werner Risau, Mechanisms of angiogenesis Nature. ,vol. 386, pp. 671- 674 ,(1997) , 10.1038/386671A0
J. David Hellums, Pretep K. Nair, Nancy S. Huang, Norio Ohshima, Simulation of intraluminal gas transport processes in the microcirculation Annals of Biomedical Engineering. ,vol. 24, pp. 1- 24 ,(1995) , 10.1007/BF02770991
Howard A Levine, Serdal Pamuk, Brian D Sleeman, Marit Nilsen-Hamilton, Mathematical Modeling of Capillary Formation and Development in Tumor Angiogenesis: Penetration into the Stroma Bulletin of Mathematical Biology. ,vol. 63, pp. 801- 863 ,(2001) , 10.1006/BULM.2001.0240
A.R. Pries, K. Ley, M. Claassen, P. Gaehtgens, Red cell distribution at microvascular bifurcations. Microvascular Research. ,vol. 38, pp. 81- 101 ,(1989) , 10.1016/0026-2862(89)90018-6