Vertical versus horizontal Sobolev spaces

作者: Katrin Fässler , Tuomas Orponen

DOI: 10.1016/J.JFA.2020.108517

关键词:

摘要: Abstract Let α ⩾ 0 , 1 p ∞ and let H n be the Heisenberg group. Folland in 1975 showed that if f : → R is a function horizontal Sobolev space S 2 ( ) then φf belongs to Euclidean + for any test φ. In short, ⊂ loc . We show localisation can omitted one only cares regularity vertical direction: continuously contained V Our search sharper result was motivated by following two applications. First, combined with short additional argument, it implies bounded Lipschitz functions on have -order derivative BMO Second, yields fractional order generalisation of (non-endpoint) versus Poincare inequalities V. Lafforgue A. Naor.

参考文章(25)
Luca Capogna, Donatella Danielli, Scott D. Pauls, Jeremy T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem ,(2007)
E. V. Radkevich, O. A. Oleĭnik, Paul C. Fife, Second-Order Equations With Nonnegative Characteristic Form ,(1973)
Loukas Grafakos, Classical Fourier Analysis ,(2008)
John L. Lewis, Steve Hofmann, Kaj Nyström, EXISTENCE OF BIG PIECES OF GRAPHS FOR PARABOLIC PROBLEMS Annales Academiae Scientiarum Fennicae. Mathematica. ,vol. 28, pp. 355- 384 ,(2003)
Luca Capogna, Regularity of quasi-linear equations in the Heisenberg group Communications on Pure and Applied Mathematics. ,vol. 50, pp. 867- 889 ,(1997) , 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
Robert S. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group Journal of Functional Analysis. ,vol. 96, pp. 350- 406 ,(1991) , 10.1016/0022-1236(91)90066-E
Kōichi Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group Tohoku Mathematical Journal. ,vol. 31, pp. 383- 437 ,(1979) , 10.2748/TMJ/1178229728