Latent Covariates in Generalized Linear Models: A Rasch Model Approach

作者: Karl Bang Christensen

DOI: 10.1007/978-0-8176-4542-7_6

关键词:

摘要: Study of multivariate data in situations where a variable interest is unobservable (latent) and only measured indirectly widely applied. Item response models are powerful tools for measurement have been extended to incorporate latent structure. The (log-linear) Rasch model simple item tests fit parameter estimation can take place without assumptions about the distribution variable. Inclusion as predictor standard regression such logistic or Poisson discussed, study relation between psychosocial work environment absence from used illustrate motivate results.

参考文章(36)
Svend Kreiner, Karl Bang Christensen, Graphical Rasch Models Springer, Boston, MA. pp. 187- 203 ,(2002) , 10.1007/978-1-4757-3625-0_15
Aeilko H. Zwinderman, Response Models with Manifest Predictors Springer, New York, NY. pp. 245- 256 ,(1997) , 10.1007/978-1-4757-2691-6_14
Gerhard H. Fischer, Ivo W. Molenaar, Rasch models: foundations, recent developments and applications Springer-Verlag. ,(1995)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Gerardus J.A. Fox, Cornelis A.W. Glas, Modeling Measurement Error in a Structural Multilevel Model Latent variable and latent structure models. pp. 245- 269 ,(2002)
José C. Pinheiro, Douglas M. Bates, Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model Journal of Computational and Graphical Statistics. ,vol. 4, pp. 12- 35 ,(1995) , 10.1080/10618600.1995.10474663
Karl Bang Christensen, Svend Kreiner, Testing the Fit of Latent Regression Models Communications in Statistics-theory and Methods. ,vol. 33, pp. 1341- 1356 ,(2004) , 10.1081/STA-120030153
Bengt O. Muthén, LATENT VARIABLE MODELING IN HETEROGENEOUS POPULATIONS Psychometrika. ,vol. 54, pp. 557- 585 ,(1989) , 10.1007/BF02296397