On Classes of Positive, Negative, and Imaginary Radix Number Systems

作者: Koren , Maliniak

DOI: 10.1109/TC.1981.1675788

关键词:

摘要: A unified approach to a broad class of finite number representation systems is proposed. This contains aDl positive and negative radix other well-known systems. In addition, it can be extended include imaginary The proposed enables us develop single set algoritims for arithmetic operations.

参考文章(11)
Harvey L. Garner, The classification of finite number systems. ifip congress. pp. 256- 259 ,(1968)
Harvey L. Garner, Number Systems and Arithmetic Advances in Computers. ,vol. 6, pp. 131- 194 ,(1966) , 10.1016/S0065-2458(08)60420-9
C.K. Yuen, A Note on Base –2 Arithmetic Logic IEEE Transactions on Computers. ,vol. 24, pp. 325- 329 ,(1975) , 10.1109/T-C.1975.224216
Donald E. Knuth, A imaginary number system Communications of the ACM. ,vol. 3, pp. 245- 247 ,(1960) , 10.1145/367177.367233
P.V. Sankar, S. Chakrabarti, E.V. Krishnamurthy, Arithmetic Algorithms in a Negative Base IEEE Transactions on Computers. ,vol. C-22, pp. 120- 125 ,(1973) , 10.1109/T-C.1973.223671
Arunas G. Slekys, Algirdas Avizienis, A modified bi-imaginary number system symposium on computer arithmetic. pp. 48- 55 ,(1978) , 10.1109/ARITH.1978.6155756
S. Zohar, New Hardware Realizations of Nonrecursive Digital Filters IEEE Transactions on Computers. ,vol. C-22, pp. 328- 338 ,(1973) , 10.1109/T-C.1973.223719
J. P. Deschamps, M. Davio, Addition in signed digit number systems international symposium on multiple-valued logic. pp. 104- 113 ,(1978) , 10.5555/800129.804194
D.P. Agrawal, Arithmetic Algorithms in a Negative Base IEEE Transactions on Computers. ,vol. 24, pp. 998- 1000 ,(1975) , 10.1109/T-C.1975.224109
Israel Koren, Yoram Maliniak, A unified approach to a class of number systems symposium on computer arithmetic. pp. 25- 28 ,(1978) , 10.1109/ARITH.1978.6155783