Angular Symmetry and Hylleraas Coordinates in Four-Body Problems

作者: Frank E. Harris

DOI: 10.1016/S0065-3276(05)50004-2

关键词:

摘要: Abstract The most accurate studies of few-body Coulomb systems have used wavefunctions forms that are simple in Hylleraas coordinates (those explicitly include all the interparticle distances). In wavefunction has been constructed from Slater-type orbitals about a single center (relative to which other particles at positions r i ) by adjoining each orbital product polynomial distances j . Matrix elements then usually evaluated expanding terms This type is not ideal for “nonadiabatic” comparable (finite) mass; preferable alternative use exponentials coordinates. It practical usual expansion methods exponential wavefunctions, and this paper considers issues arising when four-body treated directly states general angular symmetry. two problems here (1) convenient compact expression kinetic energy eigenstates, (2) integrations matrix elements. Both these differ their well-known counterparts formulations, part because orthogonal coordinates, angles independent variables.

参考文章(21)
Frank E. Harris, Current Methods for Coulomb Few-Body Problems Advances in Quantum Chemistry. ,vol. 47, pp. 129- 155 ,(2004) , 10.1016/S0065-3276(04)47008-7
Lawrence Christian Biedenharn, James D Louck, Angular Momentum in Quantum Physics: Theory and Application ,(1984)
Zong-Chao Yan, G W F Drake, Computational methods for three-electron atomic systems in Hylleraas coordinates Journal of Physics B. ,vol. 30, pp. 4723- 4750 ,(1997) , 10.1088/0953-4075/30/21/012
Robert G. Littlejohn, Matthias Reinsch, Internal or shape coordinates in then-body problem Physical Review A. ,vol. 52, pp. 2035- 2051 ,(1995) , 10.1103/PHYSREVA.52.2035
Egil A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium European Physical Journal. ,vol. 54, pp. 347- 366 ,(1929) , 10.1007/BF01375457
A. K. BHATIA, A. TEMKIN, Symmetric euler-angle decomposition of the two- electron fixed-nucleus problem. Reviews of Modern Physics. ,vol. 36, pp. 1050- 1064 ,(1964) , 10.1103/REVMODPHYS.36.1050
G. Breit, Separation of Angles in the Two-Electron Problem Physical Review. ,vol. 35, pp. 569- 578 ,(1930) , 10.1103/PHYSREV.35.569