Using Supervised Learning Techniques for Diagnosis of Dynamic Systems

作者: Rafael M Gasca , Juan A Ortega , Pedro J Abad , Antonio J Suarez

DOI:

关键词:

摘要: Abstract : This paper describes an approach based on supervised learning techniques for the diagnosis of dynamic systems. The methodology can start with real system data or a model system. In second case, set simulations is required to obtain necessary data. both cases, obtained will be labelled according running conditions at gathering time. Label indicates state system: correct working abnormal functioning any component. After being labelled, treated add additional information about final goal decision rules by applying classification tool and way, observation classified those rules, having return label indicating currently Returned diagnostic. entire task carried out off-line, before diagnosing.

参考文章(9)
Peter Struss, Fundamentals of Model-Based Diagnosis of Dynamic Systems. international joint conference on artificial intelligence. pp. 480- 485 ,(1997)
S. Leonhardt, M. Ayoubi, Methods of fault diagnosis Control Engineering Practice. ,vol. 5, pp. 683- 692 ,(1997) , 10.1016/S0967-0661(97)00050-6
Rafael M. Gasca, Juan Antonio Ortega, Pedro J. Abad, Antonio J. Suárez, Diagnosis de Sistemas Dinámicos Basada en Aprendizaje Supervisado Off-Line Computación y Sistemas. ,vol. 5, pp. 180- 191 ,(2002) , 10.13053/CYS-5-3-981
Johan De Kleer, Brian C Williams, Diagnosing multiple faults Artificial Intelligence. ,vol. 32, pp. 100- 117 ,(1987) , 10.1016/0004-3702(87)90063-4
Venkat Venkatasubramanian, King Chan, A neural network methodology for process fault diagnosis Aiche Journal. ,vol. 35, pp. 1993- 2002 ,(1989) , 10.1002/AIC.690351210
J.R. Quinlan, Induction of Decision Trees Machine Learning. ,vol. 1, pp. 81- 106 ,(1986) , 10.1023/A:1022643204877
Patrick Taillibert, Pierre Luciani, Olivier Jehl, Philippe Dague, Philippe Devés, When oscillators stop oscillating international joint conference on artificial intelligence. pp. 235- 241 ,(1992)
J. R. Quinlan, Induction of decision trees. Machine Learning symposium on the theory of computing. ,vol. 1, pp. 81- 106 ,(1986)