Identification of the deterministic part of MIMO state space models given in innovations form from input-output data

作者: Michel Verhaegen

DOI: 10.1016/0005-1098(94)90229-1

关键词:

摘要: … to identify a linear, time-invariant, finite dimensional state space model from input-output data. The system to be identified is assumed to be excited by a measurable input and an …

参考文章(11)
MICHEL VERHAEGEN, PATRICK DEWILDE, Subspace model identification Part 1. The output-error state-space model identification class of algorithms International Journal of Control. ,vol. 56, pp. 1187- 1210 ,(1992) , 10.1080/00207179208934363
Hirotugu Akaike, Markovian Representation of Stochastic Processes by Canonical Variables Siam Journal on Control. ,vol. 13, pp. 162- 173 ,(1975) , 10.1137/0313010
MICHEL VERHAEGEN, PATRICK DEWILDE, Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm International Journal of Control. ,vol. 56, pp. 1211- 1241 ,(1992) , 10.1080/00207179208934364
W.E. Larimore, Canonical variate analysis in identification, filtering, and adaptive control conference on decision and control. pp. 596- 604 ,(1990) , 10.1109/CDC.1990.203665
J. Elliott, NASA's advanced control law program for the F-8 digital fly-by-wire aircraft conference on decision and control. ,vol. 22, pp. 753- 757 ,(1976) , 10.1109/TAC.1977.1101608
John B. Moore, Brian D. O. Anderson, Mansour Eslami, Optimal Filtering IEEE Transactions on Systems, Man, and Cybernetics. ,(1982)
Gene H Golub, Charles F Van Loan, Matrix computations ,(1983)