LP-Based Combinatorial Problem Solving

作者: Karla Hoffman , Manfred Padberg

DOI: 10.1007/978-3-642-82450-0_3

关键词:

摘要: A tutorial outline of the polyhedral theory that underlies linear programming (LP)-based combinatorial problem solving is given. Design aspects a solver are discussed in general terms. Three computational studies using developed past fifteen years surveyed: one addresses symmetric traveling salesman problem, another optimal triangulation input/output matrices, and third optimization large-scale zero-one problems.

参考文章(59)
Manfred W. Padberg, Saman Hong, On the symmetric travelling salesman problem: A computational study Mathematical Programming Studies. pp. 78- 107 ,(1980) , 10.1007/BFB0120888
Manfred W. Padberg, Covering, Packing and Knapsack Problems Annals of discrete mathematics. ,vol. 4, pp. 265- 287 ,(1979) , 10.1016/S0167-5060(08)70831-8
Martin Grötschel, On the symmetric travelling salesman problem: Solution of a 120-city problem Mathematical Programming Studies. pp. 61- 77 ,(1980) , 10.1007/BFB0120887
H. P. Young, On permutations and permutation polytopes Mathematical Programming Studies. pp. 128- 140 ,(1978) , 10.1007/BFB0121198
Manfred W. Padberg, On the Complexity of Set Packing Polyhedra Studies in Integer Programming. ,vol. 1, pp. 421- 434 ,(1977) , 10.1016/S0167-5060(08)70750-7
David Shmoys, Eugene L. Lawler, Alexander H. G. Rinnooy Kan, Jan Karel Lenstra, The traveling salesman problem ,(1985)
Jaya Asthana. Singhal, FIXED ORDER BRANCH AND BOUND METHODS FOR MIXED-INTEGER PROGRAMMING. The University of Arizona.. ,(1982)
Ellis L. Johnson, Manfred W. Padberg, Degree-two Inequalities, Clique Facets, and Biperfect Graphs North-holland Mathematics Studies. ,vol. 66, pp. 169- 187 ,(1982) , 10.1016/S0304-0208(08)72450-2