Geometry of the tetrahedron space

作者: Eric Babson , Paul E. Gunnells , Richard Scott

DOI: 10.1016/J.AIM.2005.05.013

关键词:

摘要: Abstract Let X ∘ be the space of all labeled tetrahedra in P 3 . In [E. Babson, P.E. Gunnells, R. Scott, A smooth tetrahedra, Adv. Math. 165(2) (2002) 285–312] we constructed a symmetric compactification ˜ this article show that complement ⧹ is divisor with normal crossings, and compute cohomology ring H * ( ; Q )

参考文章(11)
Joel Roberts, Robert Speiser, Enumerative geometry of triangles, II Communications in Algebra. ,vol. 14, pp. 155- 191 ,(1984) , 10.1080/00927878608823302
Joel Roberts, Robert Speiser, Enumerati ve geometry of triangles, 111 Communications in Algebra. ,vol. 15, pp. 1929- 1966 ,(1987) , 10.1080/00927878708823514
H. Schubert, Anzahlgeometrische Behandlung des Dreiecks Mathematische Annalen. ,vol. 17, pp. 153- 212 ,(1880) , 10.1007/BF01443470
Eric Babson, Paul E Gunnells, Richard Scott, A Smooth Space of Tetrahedra Advances in Mathematics. ,vol. 165, pp. 285- 312 ,(2002) , 10.1006/AIMA.2001.2029
William Fulton, Robert MacPherson, A compactification of configuration spaces Annals of Mathematics. ,vol. 139, pp. 183- 225 ,(1994) , 10.2307/2946631
Peter Magyar, Borel–Weil Theorem for Configuration Varieties and Schur Modules Advances in Mathematics. ,vol. 134, pp. 328- 366 ,(1998) , 10.1006/AIMA.1997.1700
Pierre Deligne, La conjecture de Weil I. Publications Mathématiques de l'IHÉS. ,vol. 43, pp. 273- 307 ,(1974) , 10.1007/BF02684373
Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion Inventiones Mathematicae. ,vol. 21, pp. 287- 301 ,(1973) , 10.1007/BF01418790
Sean Keel, Intersection theory of incidence varieties and polygon spaces Communications in Algebra. ,vol. 18, pp. 3647- 3670 ,(1990) , 10.1080/00927879008824099
Wilberd van der Kallen, Peter Magyar, The Space of Triangles, Vanishing Theorems, and Combinatorics Journal of Algebra. ,vol. 222, pp. 17- 50 ,(1999) , 10.1006/JABR.1998.7841