Image based object classification

作者: Guillaume Heusch , Nicolas Pican

DOI:

关键词:

摘要: A method for classifying an object in image data to one out of a set classes using classifier, said comprising the object, each class indicating property common group objects, steps obtaining classifier used estimate input feature vector probability classes, whether belongs class; extracting from data; obtained probabilities extracted vector; and evaluating estimated determining does not belong any based quality indicator.

参考文章(22)
Vincent Devin, Mathieu Chuat, Pre-screening training data for classifiers ,(2013)
Michael Calonder, Vincent Lepetit, Christoph Strecha, Pascal Fua, BRIEF: Binary Robust Independent Elementary Features Computer Vision – ECCV 2010. ,vol. 6314, pp. 778- 792 ,(2010) , 10.1007/978-3-642-15561-1_56
Philippe Amon, Joao Augusto Scheid Budzinski, Myron Seto, Method and system for controlling production of items ,(2008)
Ting-Fan Wu, Chih-Jen Lin, Ruby Weng, None, Probability Estimates for Multi-class Classification by Pairwise Coupling Journal of Machine Learning Research. ,vol. 5, pp. 975- 1005 ,(2004) , 10.5555/1005332.1016791
Jingsong Xu, Zefeng Ni, Haibo Liu, Jian Zhang, Chen-Xiong Zhang, Qiang Wu, Wei Chen, Systems and methods for pedestrian detection in images ,(2013)
Toshiki Shiino, Yasuyo Yasuda, Yasushi Tanase, Yasuhiro Todoroki, Takeshi Miura, Kensuke Habuka, Tetsuya Hamada, Image identification device, image identification method and recording medium ,(2012)
Motilal Agrawal, Kurt Konolige, Morten Rufus Blas, CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching european conference on computer vision. pp. 102- 115 ,(2008) , 10.1007/978-3-540-88693-8_8
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
I. Bilik, P. Khomchuk, Minimum Divergence Approaches for Robust Classification of Ground Moving Targets IEEE Transactions on Aerospace and Electronic Systems. ,vol. 48, pp. 581- 603 ,(2012) , 10.1109/TAES.2012.6129657