作者: ERICA FLEISHMAN , JAMES R. THOMSON , RALPH MAC NALLY , DENNIS D. MURPHY , JOHN P. FAY
DOI: 10.1111/J.1523-1739.2005.00168.X
关键词:
摘要: : Values of species richness are used widely to establish conservation and management priorities. Because inventory data, money, time limited, use surrogates such as “indicator” estimate has become common. Identifying sets indicator that might reliably predict richness, especially across taxonomic groups, remains a considerable challenge. We genetic algorithms Bayesian approach explain individual combined two groups function occurrence patterns drawn from either both or one group. Genetic iteratively screen large numbers potential models predictor variables in process emulates natural selection. The best-fitting bird butterfly explained approximately 80% deviances included only the same Using predictors did not improve model fit but slightly improved parsimony (fewer predictors) richness. best five butterflies 83% deviance, whereas based on six indicators 82% deviance. A birds alone 72% found small, common set could be separately multiple groups. built explaining 70% deviance three species. also identified predicted ≥66% Our is applicable any assemblage ecosystem, may useful for estimating gaining insight into mechanisms influence diversity patterns. Resumen: Los valores de riqueza especies son ampliamente utilizados para definir prioridades conservacion y manejo. Debido que los datos inventarios, el dinero tiempo limitados, se ha vuelto comun uso sustitutos, como las “indicadoras,” estimar la especies. La identificacion conjuntos indicadoras pronostiquen confiablemente, especialmente en varios grupos taxonomicos, es un reto importante. Utilizamos algoritmos geneticos metodo Bayesiano explicar riquezas individuales combinadas dos taxonomico una funcion patrones ocurrencia extraidas ambos o uno. reiterativamente filtran grandes numeros modelos potenciales predictoras proceso emula seleccion natural. mejor ajustaron aves mariposas explicaron aproximadamente anormalidades e incluyeron solo del mismo grupo taxonomico. Utilizando taxonomicos predictores no mejoro ajuste modelo pero ligeramente parsimonia (menos predictores) aves. El combinada incluyo cinco ave explico anormalidad, mientras basada seis anormalidad. Un basado Encontramos conjunto pequeno, comun, podria ser utilizado pronosticar, por separado, multiples taxonomicos. Construimos anormalidad con base tres mariposas. Tambien identificamos predijeron ≥ 66% tanto Nuestro aplicable cualquier ensamble ecosistema, puede util incrementar entendimiento mecanismos influyen sobre diversidad.