A linear kernel for planar total dominating set

作者: Valentin Garnero , Ignasi Sau

DOI: 10.23638/DMTCS-20-1-14

关键词:

摘要: A total dominating set of a graph $G=(V,E)$ is subset $D \subseteq V$ such that every vertex in $V$ adjacent to some $D$. Finding minimum size NP-hard on planar graphs and W[2]-complete general when parameterized by the solution size. By meta-theorem Bodlaender et al. [J. ACM, 2016], there exists linear kernel for Total Dominating Set bounded genus. Nevertheless, it not clear how can be effectively constructed, obtain explicit reduction rules with reasonably small constants. Following approach Alber 2004], we provide an at most $410k$ vertices, where $k$ solution. This result complements several known constructive kernels other domination problems as Set, Edge Efficient Connected or Red-Blue Set.

参考文章(32)
Stephen Hedetniemi, Teresa W. Haynes, Peter Slater, Fundamentals of domination in graphs ,(1998)
René van Bevern, Sepp Hartung, Frank Kammer, Rolf Niedermeier, Mathias Weller, Linear-Time computation of a linear problem kernel for dominating set on planar graphs international symposium on parameterized and exact computation. pp. 194- 206 ,(2011) , 10.1007/978-3-642-28050-4_16
Qianping Gu, Navid Imani, Connectivity is not a limit for kernelization: planar connected dominating set latin american symposium on theoretical informatics. pp. 26- 37 ,(2010) , 10.1007/978-3-642-12200-2_4
Jörg Flum, Martin Grohe, Parameterized complexity theory Springer. ,(2010)
Hans L. Bodlaender, Kernelization: New Upper and Lower Bound Techniques Parameterized and Exact Computation. pp. 17- 37 ,(2009) , 10.1007/978-3-642-11269-0_2
Valentin Garnero, Ignasi Sau, Dimitrios M. Thilikos, A linear kernel for planar red-blue dominating set cologne twente workshop on graphs and combinatorial optimization. ,vol. 217, pp. 536- 547 ,(2017) , 10.1016/J.DAM.2016.09.045
Torben Hagerup, Simpler linear-time kernelization for planar dominating set international symposium on parameterized and exact computation. pp. 181- 193 ,(2011) , 10.1007/978-3-642-28050-4_15
Jiong Guo, Rolf Niedermeier, Linear Problem Kernels for NP-Hard Problems on Planar Graphs Automata, Languages and Programming. pp. 375- 386 ,(2007) , 10.1007/978-3-540-73420-8_34
Geevarghese Philip, Venkatesh Raman, Somnath Sikdar, Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels european symposium on algorithms. pp. 694- 705 ,(2009) , 10.1007/978-3-642-04128-0_62
Archontia C. Giannopoulou, Marcin Kamiński, Dimitrios M. Thilikos, Forbidding Kuratowski Graphs as Immersions Journal of Graph Theory. ,vol. 78, pp. 43- 60 ,(2015) , 10.1002/JGT.21790