Flower Patterns on Honeycomb Structures

作者: Kiyohiro Ikeda , Kazuo Murota

DOI: 10.1007/978-1-4419-7296-5_16

关键词:

摘要: Honeycomb structures under compression display illuminative geometrical patterns. As an example, Fig. 16.1(a) shows the so-called flower mode; a flowerlike pattern in (b), which is cut out from (a), comprises regular hexagon and six identical cells surrounding this hexagon. Presented (c) are its variants with different symmetries. In numerical bifurcation analysis of honeycomb structure to search for new patterns, it pertinent take advantage group-theoretic analytical information.

参考文章(19)
S.D Papka, S Kyriakides, Biaxial crushing of honeycombs: - Part 1: Experiments International Journal of Solids and Structures. ,vol. 36, pp. 4367- 4396 ,(1999) , 10.1016/S0020-7683(98)00224-8
Ian Melbourne, Steady-state bifurcation with Euclidean symmetry Transactions of the American Mathematical Society. ,vol. 351, pp. 1575- 1603 ,(1999) , 10.1090/S0002-9947-99-02147-9
Lorna J. Gibson, Michael F. Ashby, Cellular Solids: Structure and Properties ,(1988)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
A. Kudrolli, J. P. Gollub, J. P. Gollub, B. Pier, Superlattice patterns in surface waves Physica D: Nonlinear Phenomena. ,vol. 123, pp. 99- 111 ,(1998) , 10.1016/S0167-2789(98)00115-8
X.Edward Guo, Lorna J. Gibson, Behavior of intact and damaged honeycombs: a finite element study International Journal of Mechanical Sciences. ,vol. 41, pp. 85- 105 ,(1999) , 10.1016/S0020-7403(98)00037-X
Bifurcation on the hexagonal lattice and the planar Bénard problem Philosophical Transactions of the Royal Society A. ,vol. 308, pp. 617- 667 ,(1983) , 10.1098/RSTA.1983.0018
ISAO SAIKI, KIYOHIRO IKEDA, KAZUO MUROTA, Flower patterns appearing on a honeycomb structure and their bifurcation mechanism International Journal of Bifurcation and Chaos. ,vol. 15, pp. 497- 515 ,(2005) , 10.1142/S021812740501217X
N. Ohno, D. Okumura, H. Noguchi, Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation Journal of The Mechanics and Physics of Solids. ,vol. 50, pp. 1125- 1153 ,(2002) , 10.1016/S0022-5096(01)00106-5
J D Crawford, D4+T2 mode interactions and hidden rotational symmetry Nonlinearity. ,vol. 7, pp. 697- 739 ,(1994) , 10.1088/0951-7715/7/3/002