Vibration analysis of rectangular mindlin plates by the finite strip method

作者: O.L. Roufaeil , D.J. Dawe

DOI: 10.1016/0045-7949(80)90021-8

关键词:

摘要: Abstract A finite strip analysis of the vibration rectangular Mindlin plates with general boundary conditions is described. The normal modes Timoshenko beams are used to represent spatial variation along a deflection and two cross-sectional rotations. For crosswise representation equal-order polynomial interpolation employed for each these three basic quantities. accuracy approach demonstrated by results number applications square combinations simply supported, clamped free edges.

参考文章(14)
Y K Cheung, FINITE STRIP METHOD IN STRUCTURAL ANALYSIS Publication of: Pergamon Press, Incorporated. ,(1976)
A. Schacknow, R. D. Mindlin, H. Deresiewicz, FLEXURAL VIBRATIONS OF RECTANGULAR PLATES ,(1955)
Lee Yu-Chung, Herbert Reismann, DYNAMICS OF RECTANGULAR PLATES International Journal of Engineering Science. ,vol. 7, pp. 93- 113 ,(1969) , 10.1016/0020-7225(69)90025-1
K.T. Sundara Raja Iyengar, P.V. Raman, Free vibration of rectangular plates of arbitrary thickness Journal of Sound and Vibration. ,vol. 54, pp. 229- 236 ,(1977) , 10.1016/0022-460X(77)90025-6
S. Srinivas, C.V. Joga Rao, A.K. Rao, An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates Journal of Sound and Vibration. ,vol. 12, pp. 187- 199 ,(1970) , 10.1016/0022-460X(70)90089-1
D.J. Dawe, Finite strip models for vibration of mindlin plates Journal of Sound and Vibration. ,vol. 59, pp. 441- 452 ,(1978) , 10.1016/S0022-460X(78)80009-1
P. R. Benson, E. Hinton, A thick finite strip solution for static, free vibration and stability problems International Journal for Numerical Methods in Engineering. ,vol. 10, pp. 665- 678 ,(1976) , 10.1002/NME.1620100314
D.J. Dawe, O.L. Roufaeil, Rayleigh-Ritz vibration analysis of Mindlin plates Journal of Sound and Vibration. ,vol. 69, pp. 345- 359 ,(1980) , 10.1016/0022-460X(80)90477-0
A.W. Leissa, The free vibration of rectangular plates Journal of Sound and Vibration. ,vol. 31, pp. 257- 293 ,(1973) , 10.1016/S0022-460X(73)80371-2