DTI Based Diagnostic Prediction of a Disease via Pattern Classification

作者: Madhura Ingalhalikar , Stathis Kanterakis , Ruben Gur , Timothy P. L. Roberts , Ragini Verma

DOI: 10.1007/978-3-642-15705-9_68

关键词:

摘要: The paper presents a method of creating abnormality classifiers learned from Diffusion Tensor Imaging (DTI) data population patients and controls. score produced by the classifier can be used to aid in diagnosis as it quantifies degree pathology. Using anatomically meaningful features computed DTI we train non-linear support vector machine (SVM) pattern classifier. begins with high dimensional elastic registration DT images followed feature extraction step that involves concatenating average anisotropy diffusivity values regions. Feature selection is performed via mutual information based technique sequential elimination features. A SVM then constructed training on selected assigns each test subject probabilistic indicates extent In this study, were created for two populations; one consisting schizophrenia (SCZ) other individuals autism spectrum disorder (ASD). clear distinction between SCZ controls was achieved 90.62% accuracy while ASD, 89.58% classification obtained. scores clearly separate groups prospect using diagnostic prognostic marker.

参考文章(13)
Peng Wang, Ragini Verma, On Classifying Disease-Induced Patterns in the Brain Using Diffusion Tensor Images medical image computing and computer assisted intervention. ,vol. 11, pp. 908- 916 ,(2008) , 10.1007/978-3-540-85988-8_108
Zhiqiang Lao, Dinggang Shen, Zhong Xue, Bilge Karacali, Susan M. Resnick, Christos Davatzikos, Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage. ,vol. 21, pp. 46- 57 ,(2004) , 10.1016/J.NEUROIMAGE.2003.09.027
Christos Davatzikos, Madhura Ingalhalikar, Ragini Verma, Jinzhong Yang, DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors International Journal of Imaging Systems and Technology. ,vol. 20, pp. 99- 107 ,(2010) , 10.1002/IMA.V20:2
Setsu Wakana, Hangyi Jiang, Lidia M. Nagae-Poetscher, Peter C. M. van Zijl, Susumu Mori, Fiber tract-based atlas of human white matter anatomy. Radiology. ,vol. 230, pp. 77- 87 ,(2004) , 10.1148/RADIOL.2301021640
P GOLLAND, W GRIMSON, M SHENTON, R KIKINIS, Detection and Analysis of Statistical Differences in Anatomical Shape Medical Image Analysis. ,vol. 9, pp. 69- 86 ,(2005) , 10.1016/J.MEDIA.2004.07.003
Alain Rakotomamonjy, Variable selection using svm based criteria Journal of Machine Learning Research. ,vol. 3, pp. 1357- 1370 ,(2003)
M CAAN, K VERMEER, L VANVLIET, C MAJOIE, B PETERS, G DENHEETEN, F VOS, Shaving diffusion tensor images in discriminant analysis: A study into schizophrenia Medical Image Analysis. ,vol. 10, pp. 841- 849 ,(2006) , 10.1016/J.MEDIA.2006.07.006
Isabelle Guyon, André Elisseeff, An introduction to variable and feature selection Journal of Machine Learning Research. ,vol. 3, pp. 1157- 1182 ,(2003) , 10.1162/153244303322753616
Yong Fan, Dinggang Shen, Ruben C. Gur, Raquel E. Gur, Christos Davatzikos, COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements IEEE Transactions on Medical Imaging. ,vol. 26, pp. 93- 105 ,(2007) , 10.1109/TMI.2006.886812
Kilian M. Pohl, Mert R. Sabuncu, A Unified Framework for MR Based Disease Classification information processing in medical imaging. ,vol. 21, pp. 300- 313 ,(2009) , 10.1007/978-3-642-02498-6_25