Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen

作者: Edoardo M. Airoldi , Darach Miller , Rodoniki Athanasiadou , Nathan Brandt , Farah Abdul-Rahman

DOI: 10.1091/MBC.E14-05-1013

关键词:

摘要: Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. InSaccharomyces cerevisiae(budding yeast), environmental nitrogen a major determinant cell rate, supporting rates that vary at least threefold. Transcriptional control use mediated large part by catabolite repression (NCR), which results specific transcripts presence preferred source supports fast such as glutamine, are otherwise expressed nonpreferred source, proline, slower rate. Differential expression NCR regulon additional nitrogen-responsive genes >500 differentially cells growing different sources batch cultures. Here we find rate-controlled cultures using nitrogen-limited chemostats, gene programs strikingly similar regardless source. derepressed all nitrogen-limiting chemostat conditions these conditions, only 34 exhibit source-specific differential expression. Addition either or chemostats rapid, dose-dependent regulon. Using novel means computational normalization compare global steady-state dynamic evidence addition transient overproduction required for protein translation. Simultaneously, accelerated mRNA degradation underlies rapid clearing subset transcripts, most pronounced highly NCR-regulated permease genesGAP1,MEP2,DAL5,PUT4, andDIP5 Our reveal aspects nitrogen-regulated highlight need quantitative approach study how coordinates translation assimilation optimize environments.

参考文章(63)
Viktor M. Boer, Johannes H. de Winde, Jack T. Pronk, Matthew D. W. Piper, The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur Journal of Biological Chemistry. ,vol. 278, pp. 3265- 3274 ,(2003) , 10.1074/JBC.M209759200
B. L. Baumgartner, M. R. Bennett, M. Ferry, T. L. Johnson, L. S. Tsimring, J. Hasty, Antagonistic gene transcripts regulate adaptation to new growth environments Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 21087- 21092 ,(2011) , 10.1073/PNAS.1111408109
Boris Magasanik, Chris A Kaiser, Nitrogen regulation in Saccharomyces cerevisiae. Gene. ,vol. 290, pp. 1- 18 ,(2002) , 10.1016/S0378-1119(02)00558-9
Francine Messenguy, Evelyne Dubois, Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast Molecular and General Genetics MGG. ,vol. 189, pp. 148- 156 ,(1983) , 10.1007/BF00326068
M. E. Cardenas, N. S. Cutler, M. C. Lorenz, C. J. Di Como, J. Heitman, The TOR signaling cascade regulates gene expression in response to nutrients Genes & Development. ,vol. 13, pp. 3271- 3279 ,(1999) , 10.1101/GAD.13.24.3271
J. Richard Ludwig, Stephen G. Oliver, Calvin S. McLaughlin, The regulation of RNA synthesis in yeast II: Amino acids shift-up experiments. Molecular Genetics and Genomics. ,vol. 158, pp. 117- 122 ,(1977) , 10.1007/BF00268303
Paul Jorgensen, Joy L Nishikawa, Bobby-Joe Breitkreutz, Mike Tyers, Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast Science. ,vol. 297, pp. 395- 400 ,(2002) , 10.1126/SCIENCE.1070850
Edoardo M. Airoldi, Curtis Huttenhower, David Gresham, Charles Lu, Amy A. Caudy, Maitreya J. Dunham, James R. Broach, David Botstein, Olga G. Troyanskaya, Predicting Cellular Growth from Gene Expression Signatures PLoS Computational Biology. ,vol. 5, pp. e1000257- ,(2009) , 10.1371/JOURNAL.PCBI.1000257