Spatial Clustering for Mining Knowledge in Support of Generalization Processes in GIS

作者: Bin Jiang

DOI:

关键词:

摘要: This paper proposes spatial clustering to be used for mining knowledge in support of generalization processes GIS. Three aspects are investigated the study. First, facilitates detection hidden structures and patterns (with source map or database) that should retained course generalization, particular when multiple attributes from geometric, topological semantic perspectives involved. Second, hierarchical supported by a dendrogram provides an efficient effective tool visual interrogation exploration clusters multirepresentation. Third, some objective criteria quality assessment terms how derived represent initial dataset. All these illustrated with conducted case studies this paper.

参考文章(9)
Robert Weibel, Stefan Keller, Tumasch Reichenbacher, Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence conference on spatial information theory. pp. 139- 156 ,(1995) , 10.1007/3-540-60392-1_10
P. Berkhin, A Survey of Clustering Data Mining Techniques Grouping Multidimensional Data. pp. 25- 71 ,(2006) , 10.1007/3-540-28349-8_2
Jinwook Seo, B. Shneiderman, Interactively exploring hierarchical clustering results [gene identification] IEEE Computer. ,vol. 35, pp. 80- 86 ,(2002) , 10.1109/MC.2002.1016905
Ian H. Witten, Eibe Frank, Data mining ACM SIGMOD Record. ,vol. 31, pp. 76- 77 ,(2002) , 10.1145/507338.507355
Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis, On Clustering Validation Techniques intelligent information systems. ,vol. 17, pp. 107- 145 ,(2001) , 10.1023/A:1012801612483
Gregory Piatetsky-Shapiro, Usama M. Fayyad, Padhraic Smyth, From Data Mining to Knowledge Discovery in Databases Ai Magazine. ,vol. 17, pp. 37- 54 ,(1996) , 10.1609/AIMAG.V17I3.1230
Jiawei Han, Harvey J. Miller, Spatial clustering methods in data mining CRC Press. pp. 216- 246 ,(2001) , 10.1201/B12382-18
Peter J. Rousseeuw, Leonard Kaufman, Finding Groups in Data: An Introduction to Cluster Analysis ,(1990)