On the use of posterior predictive probabilities and prediction uncertainty to tailor informative sampling for parasitological surveillance in livestock.

作者: Vincenzo Musella , Laura Rinaldi , Corrado Lagazio , Giuseppe Cringoli , Annibale Biggeri

DOI: 10.1016/J.VETPAR.2014.07.004

关键词:

摘要: Model-based geostatistics and Bayesian approaches are appropriate in the context of Veterinary Epidemiology when point data have been collected by valid study designs. The aim is to predict a continuous infection risk surface. Little work has done on use predictive probabilities at farm unit level. In this paper we show how probability related uncertainty from kriging model draw informative samples 8794 geo-referenced sheep farms Campania region (southern Italy). Parasitological come first cross-sectional survey carried out spatial distribution selected helminths farms. A grid sampling was performed select for coprological examinations. Faecal were 121 presence 21 different investigated using FLOTAC technique. responses very terms geographical prevalence infection. observed range 0.83% 96.69%. distributions posterior all parasites heterogeneous. We results can be used plan second wave survey. Several alternatives chosen depending purposes survey: weight probabilities, their or combining both information. proposed simple, samping strategy represents useful tool address targeted control treatments surbveillance campaigns. It easily extendable other fields research.

参考文章(32)
Ricardo J. Soares Magalhães, Archie C.A. Clements, Anand P. Patil, Peter W. Gething, Simon Brooker, The Applications of Model-Based Geostatistics in Helminth Epidemiology and Control Advances in Parasitology. ,vol. 74, pp. 267- 296 ,(2011) , 10.1016/B978-0-12-385897-9.00005-7
David J. Lunn, Andrew Thomas, Nicky Best, David Spiegelhalter, WinBUGS – A Bayesian modelling framework: Concepts, structure, and extensibility Statistics and Computing. ,vol. 10, pp. 325- 337 ,(2000) , 10.1023/A:1008929526011
Nadine Schur, Eveline Hürlimann, Anna-Sofie Stensgaard, Kingford Chimfwembe, Gabriel Mushinge, Christopher Simoonga, Narcis B. Kabatereine, Thomas K. Kristensen, Jürg Utzinger, Penelope Vounatsou, Spatially explicit Schistosoma infection risk in eastern Africa using Bayesian geostatistical modelling. Acta Tropica. ,vol. 128, pp. 365- 377 ,(2013) , 10.1016/J.ACTATROPICA.2011.10.006
Marı́a-Gloria Basáñez, Clare Marshall, Hélène Carabin, Theresa Gyorkos, Lawrence Joseph, Bayesian statistics for parasitologists Trends in Parasitology. ,vol. 20, pp. 85- 91 ,(2004) , 10.1016/J.PT.2003.11.008
Laura Gosoniu, Andre Mia Veta, Penelope Vounatsou, Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola PLOS ONE. ,vol. 5, ,(2010) , 10.1371/JOURNAL.PONE.0009322
Armelle Forrer, Somphou Sayasone, Penelope Vounatsou, Youthanavanh Vonghachack, Dalouny Bouakhasith, Steffen Vogt, Rüdiger Glaser, Jürg Utzinger, Kongsap Akkhavong, Peter Odermatt, Spatial distribution of, and risk factors for, Opisthorchis viverrini infection in southern Lao PDR. PLOS Neglected Tropical Diseases. ,vol. 6, ,(2012) , 10.1371/JOURNAL.PNTD.0001481
Laura Rinaldi, Vincenzo Musella, Annibale Biggeri, Giuseppe Cringoli, New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospatial Health. ,vol. 1, pp. 33- 47 ,(2006) , 10.4081/GH.2006.279
Nadine Schur, L. Gosoniu, G. Raso, J. Utzinger, P. Vounatsou, Modelling the geographical distribution of co-infection risk from single-disease surveys. Statistics in Medicine. ,vol. 30, pp. 1761- 1776 ,(2011) , 10.1002/SIM.4243
Abdisalan M Noor, Archie CA Clements, Peter W Gething, Grainne Moloney, Mohammed Borle, Tanya Shewchuk, Simon I Hay, Robert W Snow, None, Spatial prediction of Plasmodium falciparum prevalence in Somalia Malaria Journal. ,vol. 7, pp. 159- 159 ,(2008) , 10.1186/1475-2875-7-159