Analysis of discrete, time-sampled data using Fourier series method.

作者: Lindsay M. Faunt , Michael L. Johnson

DOI: 10.1016/0076-6879(92)10017-8

关键词:

摘要: Publisher Summary This chapter outlines a method of Fourier analysis suitable for more general class data. The presents by which the limitations standard are overcome. series technique is valuable tool in data time domain. Typically, experimenter presented with measurements parameter y ( X i ) (hormone concentration, instance) as function independent variable x (usually time). values coefficients that have highest probability, or maximum likelihood, being correct can be obtained. equivalent to least-squares if it assumed assume (1) random experimental uncertainties (noise) described Gaussian distribution, (2) there no systematic data, (3) all dependent variable, (xi), (4) observations (X observations, (5) N large enough provide good sampling uncertainties, and (6) indeed description

参考文章(8)
Robert W. Ramirez, The Fft, Fundamentals and Concepts ,(1984)
Cleve B. Moler, George E. Forsythe, Michael A. Malcolm, Computer methods for mathematical computations ,(1977)
D. Keith Robinson, Philip R. Bevington, Data Reduction and Error Analysis for the Physical Sciences ,(1969)
Charles L. Lawson, Richard J. Hanson, Solving Least Squares Problems ,(1974)
Donald A. McQuarrie, Handbook of Mathematical Functions American Journal of Physics. ,vol. 34, pp. 177- 177 ,(1966) , 10.1119/1.1972842
H. Akaike, A new look at the statistical model identification IEEE Transactions on Automatic Control. ,vol. 19, pp. 716- 723 ,(1974) , 10.1109/TAC.1974.1100705
Francis Begnaud Hildebrand, Introduction to numerical analysis International Series in Pure and Applied Mathematics. ,(1974)
Thomas A. Brubaker, Kelly R. O'Keefe, Nonlinear Parameter Estimation Analytical Chemistry. ,vol. 51, ,(1979) , 10.1021/AC50049A796