Bayesian Regression and Classification Using Gaussian Process Priors Indexed by Probability Density Functions

作者: A. Fradi , Y. Feunteun , C. Samir , M. Baklouti , F. Bachoc

DOI: 10.1016/J.INS.2020.09.027

关键词:

摘要: In this paper, we introduce the notion of Gaussian processes indexed by probability density functions for extending Matern family covariance functions. We use some tools from information geometry to improve efficiency and computational aspects Bayesian learning model. particularly show how a inference with process prior (covariance parameters estimation prediction) can be put into action on space Our framework has capacity classifiying infering data observations that lie nonlinear subspaces. Extensive experiments multiple synthetic, semi-synthetic real demonstrate effectiveness proposed methods in comparison current state-of-the-art methods.

参考文章(48)
Katherine M Flegal, Lester R Curtin, Clifford L Johnson, Zuguo Mei, Rong Wei, Cynthia L Ogden, Laurence M Grummer-Strawn, Robert J Kuczmarski, Shumei S Guo, Alex F Roche, 2000 CDC Growth Charts for the United States: methods and development. Vital and health statistics. Series 11, Data from the National Health Survey. pp. 1- 190 ,(2002)
Michael L. Stein, Interpolation of Spatial Data Springer New York. ,(1999) , 10.1007/978-1-4612-1494-6
N. Čencov, Statistical Decision Rules and Optimal Inference Translations of Mathematical#N# Monographs. ,(2000) , 10.1090/MMONO/053
C. Radhakrishna Rao, Information and the Accuracy Attainable in the Estimation of Statistical Parameters Bull Calcutta. Math. Soc.. ,vol. 37, pp. 235- 247 ,(1992) , 10.1007/978-1-4612-0919-5_16
Martin Bauer, Martins Bruveris, Peter W Michor, None, Uniqueness of the Fisher–Rao metric on the space of smooth densities Bulletin of the London Mathematical Society. ,vol. 48, pp. 499- 506 ,(2016) , 10.1112/BLMS/BDW020
Kenji Fukumizu, Bharath Sriperumbudur, Aapo Hyvärinen, Arthur Gretton, Revant Kumar, Density Estimation in Infinite Dimensional Exponential Families arXiv: Statistics Theory. ,(2013)
Radford M. Neal, Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification arXiv: Data Analysis, Statistics and Probability. ,(1997)
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)