Water distribution system design using multi-objective particle swarm optimisation

作者: Mahesh B Patil , M Naveen Naidu , A Vasan , Murari R R Varma

DOI: 10.1007/S12046-019-1258-Y

关键词:

摘要: Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design water distribution systems is described. An earlier MOPSO augmented with (a) local search, (b) a modified strategy for assigning leader and (c) mutation scheme. For one benchmark problems described in literature, effect each these features on performance demonstrated. The (called MOPSO+) applied five problems, case, non-dominated solutions not reported are found. In addition, purpose comparing Pareto fronts (sets solutions) obtained by different algorithms, new criterion suggested, its usefulness pointed out an example. Finally, some suggestions regarding future research directions made.

参考文章(30)
Hisao Ishibuchi, Tadashi Yoshida, Hybrid Evolutionary Multi-Objective Optimization Algorithms. HIS. pp. 163- 172 ,(2002)
Maarten Inja, Chiel Kooijman, Maarten de Waard, Diederik M. Roijers, Shimon Whiteson, Queued Pareto Local Search for Multi-Objective Optimization parallel problem solving from nature. ,vol. 8672, pp. 589- 599 ,(2014) , 10.1007/978-3-319-10762-2_58
Darian Nicholas Raad, Multi-objective optimisation of water distribution systems design using metaheuristics Stellenbosch : University of Stellenbosch. ,(2011)
Daniel Mora-Melia, Pedro Luis Iglesias-Rey, F Javier Martínez-Solano, Pablo Ballesteros-Perez, Efficiency of evolutionary algorithms in water network pipe sizing Water Resources Management. ,vol. 29, pp. 4817- 4831 ,(2015) , 10.1007/S11269-015-1092-X
Mehdi Ahmadi, Mazdak Arabi, Dana L. Hoag, Bernard A. Engel, A mixed discrete‐continuous variable multiobjective genetic algorithm for targeted implementation of nonpoint source pollution control practices Water Resources Research. ,vol. 49, pp. 8344- 8356 ,(2013) , 10.1002/2013WR013656
Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, Yoshikazu Nishikawa, Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm parallel problem solving from nature. pp. 504- 512 ,(1996) , 10.1007/3-540-61723-X_1014
Jérémie Dubois-Lacoste, Manuel López-Ibáñez, Thomas Stützle, Combining Two Search Paradigms for Multi-objective Optimization: Two-Phase and Pareto Local Search Studies in computational intelligence. ,vol. 434, pp. 97- 117 ,(2013) , 10.1007/978-3-642-30671-6_3
Margarita Reyes Sierra, Carlos A. Coello Coello, Improving PSO-Based multi-objective optimization using crowding, mutation and ∈-dominance international conference on evolutionary multi criterion optimization. pp. 505- 519 ,(2005) , 10.1007/978-3-540-31880-4_35
Joshua Knowles, David Corne, Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects In: Recent Advances in Memetic Algorithms. Springer; 2004. p. 313-352.. pp. 313- 352 ,(2005) , 10.1007/3-540-32363-5_14