Adaptive finite element method for fractional differential equations using hierarchical matrices

作者: Xuan Zhao , Xiaozhe Hu , Wei Cai , George Em Karniadakis

DOI: 10.1016/J.CMA.2017.06.017

关键词:

摘要: Abstract A robust and fast solver for the fractional differential equation (FDEs) involving Riesz derivative is developed using an adaptive finite element method. It based on utilization of hierarchical matrices ( H -Matrices) representation stiffness matrix resulting from discretization FDEs. We employ a geometric multigrid method solution algebraic system equations. combine it with algorithm posteriori error estimation. estimation used to deal general-type singularities arising in Through various test examples we demonstrate efficiency high-accuracy numerical even presence singularities. The proposed technique has been verified effectively through fundamental including Riesz, Left/Right Riemann–Liouville and, furthermore, can be readily extended more general equations different boundary conditions low-order terms.

参考文章(48)
Ricardo H. Nochetto, Kunibert G. Siebert, Andreas Veeser, Theory of adaptive finite element methods: An introduction Springer, Berlin, Heidelberg. pp. 409- 542 ,(2009) , 10.1007/978-3-642-03413-8_12
Alberto Carpinteri, Francesco Mainardi, Fractals and fractional calculus in continuum mechanics Springer-Verlag. ,(1997) , 10.1007/978-3-7091-2664-6
Oleg Igorevich Marichev, Stefan G Samko, Anatoly A Kilbas, Fractional Integrals and Derivatives: Theory and Applications ,(1993)
Yingjun Jiang, Xuejun Xu, Multigrid methods for space fractional partial differential equations Journal of Computational Physics. ,vol. 302, pp. 374- 392 ,(2015) , 10.1016/J.JCP.2015.08.052
Kenneth L. Ho, Lexing Ying, Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations Communications on Pure and Applied Mathematics. ,vol. 69, pp. 1415- 1451 ,(2016) , 10.1002/CPA.21577
Vincent J. Ervin, John Paul Roop, Variational formulation for the stationary fractional advection dispersion equation Numerical Methods for Partial Differential Equations. ,vol. 22, pp. 558- 576 ,(2006) , 10.1002/NUM.20112
Mario Bebendorf, Approximation of boundary element matrices Numerische Mathematik. ,vol. 86, pp. 565- 589 ,(2000) , 10.1007/PL00005410
Hong Wang, Treena S. Basu, A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations SIAM Journal on Scientific Computing. ,vol. 34, ,(2012) , 10.1137/12086491X
Hong-Kui Pang, Hai-Wei Sun, Multigrid method for fractional diffusion equations Journal of Computational Physics. ,vol. 231, pp. 693- 703 ,(2012) , 10.1016/J.JCP.2011.10.005