Resolution Analysis for Discrete Systems

作者: B. Kennett , G. Nolet

DOI: 10.1111/J.1365-246X.1978.TB03749.X

关键词:

摘要: summary. Treatments of geophysical inverse problems have tended to polarize into approaches intended generate models either described by piecewise continuous functions or with some prior discretization. The two are here developed in parallel, and the ideas a trade-off between anticipated error attainable level detail model estimate extended discrete case, even uneven discretization. An alternative approach specifying potential resolution is establish upper lower bounds on parameter values. Linear programming methods determine which allow for subjective limits values. For non-linear system possible may be investigated estimation procedures based full set successful solutions obtained Monte-Carlo inversion.

参考文章(14)
Freeman Gilbert, Ranking and Winnowing Gross Earth Data for Inversion and Resolution Geophysical Journal International. ,vol. 23, pp. 125- 128 ,(2007) , 10.1111/J.1365-246X.1971.TB01807.X
Carl Edward Johnson, Regionalized earth models from linear programming methods. Massachusetts Institute of Technology. ,(1972)
P.C. Sabatier, On geophysical inverse problems and constraints Journal of Geophysics | IF 32.18. ,vol. 43, pp. 115- 137 ,(1977)
G. Nolet, The upper mantle under Western Europe inferred from the dispersion of Rayleigh modes Journal of geophysics. ,vol. 43, pp. 265- 285 ,(1977)
G. E. Backus, J. F. Gilbert, Numerical Applications of a Formalism for Geophysical Inverse Problems Geophysical Journal International. ,vol. 13, pp. 247- 276 ,(1967) , 10.1111/J.1365-246X.1967.TB02159.X
R. S. Anderssen, E. Seneta, A simple statistical estimation procedure for Monte Carlo Inversion in geophysics Pure and Applied Geophysics. ,vol. 91, pp. 5- 13 ,(1971) , 10.1007/BF00879552
Uniqueness in the Inversion of Inaccurate Gross Earth Data Philosophical Transactions of the Royal Society A. ,vol. 266, pp. 123- 192 ,(1970) , 10.1098/RSTA.1970.0005
Norman Burkhard, David D. Jackson, Application of stabilized linear inverse theory to gravity data Journal of Geophysical Research. ,vol. 81, pp. 1513- 1518 ,(1976) , 10.1029/JB081I008P01513
Joel N Franklin, Well-posed stochastic extensions of ill-posed linear problems☆ Journal of Mathematical Analysis and Applications. ,vol. 31, pp. 682- 716 ,(1970) , 10.1016/0022-247X(70)90017-X
B. L. N. Kennett, A Comparison of Travel-Time Inversions Geophysical Journal International. ,vol. 44, pp. 517- 536 ,(1976) , 10.1111/J.1365-246X.1976.TB00290.X