Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State.

作者: Matthew P. Patricelli , Matthew R. Janes , Lian-Sheng Li , Rasmus Hansen , Ulf Peters

DOI: 10.1158/2159-8290.CD-15-1105

关键词:

摘要: KRAS gain-of-function mutations occur in approximately 30% of all human cancers. Despite more than 30 years KRAS-focused research and development efforts, no targeted therapy has been discovered for cancers with mutations. Here, we describe ARS-853, a selective, covalent inhibitor KRASG12C that inhibits mutant KRAS–driven signaling by binding to the GDP-bound oncoprotein preventing activation. Based on rates engagement inhibition observed along mutant-specific mass spectrometry–based assay assessing activation status, show nucleotide state is dynamic flux can be modulated upstream factors. These studies provide convincing evidence G12C mutation generates “hyperexcitable” rather “statically active” targeting inactive, form promising approach generating novel anti-RAS therapeutics. Significance: A cell-active, mutant-specific, described targets GDP-bound, inactive prevents subsequent Using this compound, demonstrate rapidly cycles bound responds inputs maintain highly active state. Cancer Discov; 6(3); 316–29. ©2016 AACR . See related commentary Westover et al., [p. 233][1] . This article highlighted In This Issue feature, 217][2] [1]: /lookup/volpage/6/233?iss=3 [2]: /lookup/volpage/6/217?iss=3

参考文章(32)
Fumi Shima, Yoko Yoshikawa, Shigeyuki Matsumoto, Tohru Kataoka, Discovery of small-molecule Ras inhibitors that display antitumor activity by interfering with Ras·GTP-effector interaction. The Enzymes. ,vol. 34, pp. 1- 23 ,(2013) , 10.1016/B978-0-12-420146-0.00001-9
Kenneth A. Johnson, Chapter 23 Fitting Enzyme Kinetic Data with KinTek Global Kinetic Explorer Methods in Enzymology. ,vol. 467, pp. 601- 626 ,(2009) , 10.1016/S0076-6879(09)67023-3
D.R. Alessi, Y. Saito, D.G. Campbell, P. Cohen, G. Sithanandam, U. Rapp, A. Ashworth, C.J. Marshall, S. Cowley, Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. The EMBO Journal. ,vol. 13, pp. 1610- 1619 ,(1994) , 10.1002/J.1460-2075.1994.TB06424.X
Saori Fujita-Sato, Jacqueline Galeas, Morgan Truitt, Cameron Pitt, Anatoly Urisman, Sourav Bandyopadhyay, Davide Ruggero, Frank McCormick, Enhanced MET translation and signaling sustains K-Ras driven proliferation under anchorage-independent growth conditions Cancer Research. ,vol. 75, pp. 2851- 2862 ,(2015) , 10.1158/0008-5472.CAN-14-1623
John C. Hunter, Anuj Manandhar, Martin A. Carrasco, Deepak Gurbani, Sudershan Gondi, Kenneth D. Westover, Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations Molecular Cancer Research. ,vol. 13, pp. 1325- 1335 ,(2015) , 10.1158/1541-7786.MCR-15-0203
Qi Sun, Jason P. Burke, Jason Phan, Michael C. Burns, Edward T. Olejniczak, Alex G. Waterson, Taekyu Lee, Olivia W. Rossanese, Stephen W. Fesik, Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation. Angewandte Chemie. ,vol. 51, pp. 6140- 6143 ,(2012) , 10.1002/ANIE.201201358
M. R. Ahmadian, T. Zor, D. Vogt, W. Kabsch, Z. Selinger, A. Wittinghofer, K. Scheffzek, Guanosine triphosphatase stimulation of oncogenic Ras mutants Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 7065- 7070 ,(1999) , 10.1073/PNAS.96.12.7065
J. Buss, P. Solski, J. Schaeffer, M. MacDonald, C. Der, Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Science. ,vol. 243, pp. 1600- 1603 ,(1989) , 10.1126/SCIENCE.2648572
Bradley Ford, Karlheinz Skowronek, Sean Boykevisch, Dafna Bar-Sagi, Nicolas Nassar, Structure of the G60A mutant of Ras: implications for the dominant negative effect. Journal of Biological Chemistry. ,vol. 280, pp. 25697- 25705 ,(2005) , 10.1074/JBC.M502240200