A Transient Thermal Model for Friction Stir Weld. Part I: The Model

作者: X. X. Zhang , B. L. Xiao , Z. Y. Ma

DOI: 10.1007/S11661-011-0729-5

关键词:

摘要: Current analytical thermal models for friction stir welding (FSW) are mainly focused on the steady-state condition. To better understand FSW process, we propose a transient model FSW, which considers all periods of FSW. A temperature-dependent apparent coefficient solved by inverse solution method (ISM) is used to estimate heat generation rate. The physical reasonableness, self-consistency, and relative achievements this discussed, relationships between generation, coefficient, temperature established. negative feedback mechanism positive proposed first time found be dominant factors in controlling turn temperature. Furthermore, controller level validity proved applying it 6061-T651 6063-T5 aluminum alloys.

参考文章(38)
Jesper Hattel, Henrik Nikolaj Blich Schmidt, Heat source models in simulation of heat flow in friction stir welding International Journal of Offshore and Polar Engineering. ,vol. 14, pp. 296- 304 ,(2004)
C. Hamilton, A. Sommers, S. Dymek, A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions International Journal of Machine Tools & Manufacture. ,vol. 49, pp. 230- 238 ,(2009) , 10.1016/J.IJMACHTOOLS.2008.11.004
S. Xu, X. deng, A.P. Reynolds, T.U. Seidel, Finite element simulation of material flow in friction stir welding Science and Technology of Welding and Joining. ,vol. 6, pp. 191- 193 ,(2001) , 10.1179/136217101101538640
Z. Zhang, H. W. Zhang, A fully coupled thermo-mechanical model of friction stir welding The International Journal of Advanced Manufacturing Technology. ,vol. 37, pp. 279- 293 ,(2008) , 10.1007/S00170-007-0971-6
A. Bastier, M. H. Maitournam, K. Dang Van, F. Roger, Steady state thermomechanical modelling of friction stir welding Science and Technology of Welding and Joining. ,vol. 11, pp. 278- 288 ,(2006) , 10.1179/174329306X102093
Hosein Atharifar, Dechao Lin, Radovan Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding Journal of Materials Engineering and Performance. ,vol. 18, pp. 339- 350 ,(2009) , 10.1007/S11665-008-9298-1
Z. Zhang, Y. L. Liu, J. T. Chen, Effect of shoulder size on the temperature rise and the material deformation in friction stir welding The International Journal of Advanced Manufacturing Technology. ,vol. 45, pp. 889- 895 ,(2009) , 10.1007/S00170-009-2034-7
F.C. Liu, Z.Y. Ma, Influence of Tool Dimension and Welding Parameters on Microstructure and Mechanical Properties of Friction-Stir-Welded 6061-T651 Aluminum Alloy Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 39, pp. 2378- 2388 ,(2008) , 10.1007/S11661-008-9586-2
M. Maalekian, E. Kozeschnik, H.P. Brantner, H. Cerjak, Comparative analysis of heat generation in friction welding of steel bars Acta Materialia. ,vol. 56, pp. 2843- 2855 ,(2008) , 10.1016/J.ACTAMAT.2008.02.016
H. Schmidt, J. Hattel, Modelling heat flow around tool probe in friction stir welding Science and Technology of Welding and Joining. ,vol. 10, pp. 176- 186 ,(2005) , 10.1179/174329305X36070