Estimation method and system for complex securities using low-discrepancy deterministic sequences

作者: Irwin F. Vanderhoof , Spassimir Paskov , Joseph F. Traub

DOI:

关键词:

摘要: In securities trading, in setting the initial offering price of a financial instrument, or later revaluation as parameters such interest rates may change, an estimate value instrument be represented multi-dimensional integral. For evaluation integral, numerical integration is preferred with integrand being sampled at deterministic points having low-discrepancy property. The technique produces approximate values significant computational savings and greater reliability compared Monte Carlo technique.

参考文章(19)
Barry Cipra, Paul Zorn, Dana MacKenzie, What's happening in the mathematical sciences ,(1993)
E J Janse van Rensburg, G M Torrie, Estimation of multidimensional integrals: is Monte Carlo the best method? Journal of Physics A. ,vol. 26, pp. 943- 953 ,(1993) , 10.1088/0305-4470/26/4/022
S. Ninomiya, S. Tezuka, Toward real-time pricing of complex financial derivatives Applied Mathematical Finance. ,vol. 3, pp. 1- 20 ,(1996) , 10.1080/13504869600000001
B. Moskowitz, R.E. Caflisch, Smoothness and dimension reduction in Quasi-Monte Carlo methods Mathematical and Computer Modelling. ,vol. 23, pp. 37- 54 ,(1996) , 10.1016/0895-7177(96)00038-6
S.H. Paskov, Average case complexity of multivariate integration for smooth functions Journal of Complexity. ,vol. 9, pp. 291- 312 ,(1993) , 10.1006/JCOM.1993.1019
H. Woźniakowski, Average case complexity of multivariate integration Bulletin of the American Mathematical Society. ,vol. 24, pp. 185- 194 ,(1991) , 10.1090/S0273-0979-1991-15985-9