Service Benefit Aware Multi-Task Assignment Strategy for Mobile Crowd Sensing.

作者: Zhidu Li , Hailiang Liu , Ruyan Wang

DOI: 10.3390/S19214666

关键词:

摘要: Mobile crowd sensing (MCS) systems usually attract numerous participants with widely varying sensing costs and interest preferences to perform tasks, where accurate task assignment …

参考文章(35)
Yu Zheng, Furui Liu, Hsun-Ping Hsieh, U-Air: when urban air quality inference meets big data knowledge discovery and data mining. pp. 1436- 1444 ,(2013) , 10.1145/2487575.2488188
Bin Guo, Zhu Wang, Zhiwen Yu, Yu Wang, Neil Y. Yen, Runhe Huang, Xingshe Zhou, Mobile Crowd Sensing and Computing: The Review of an Emerging Human-Powered Sensing Paradigm ACM Computing Surveys. ,vol. 48, pp. 7- ,(2015) , 10.1145/2794400
H. Gao, C. H. Liu, W. Wang, J. Zhao, Z. Song, X. Su, J. Crowcroft, K. K Leung, A Survey of Incentive Mechanisms for Participatory Sensing IEEE Communications Surveys and Tutorials. ,vol. 17, pp. 918- 943 ,(2015) , 10.1109/COMST.2014.2387836
Eunjoon Cho, Seth A. Myers, Jure Leskovec, Friendship and mobility Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11. pp. 1082- 1090 ,(2011) , 10.1145/2020408.2020579
Di Wu, Qiang Liu, Yong Li, Julie A. McCann, Amelia C. Regan, Nalini Venkatasubramanian, Adaptive Lookup of Open WiFi Using Crowdsensing IEEE ACM Transactions on Networking. ,vol. 24, pp. 3634- 3647 ,(2016) , 10.1109/TNET.2016.2533399
Panagiotis Mavridis, David Gross-Amblard, Zoltán Miklós, Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing the web conference. pp. 843- 853 ,(2016) , 10.1145/2872427.2883070
Mingjun Xiao, Jie Wu, Liusheng Huang, Ruhong Cheng, Yunsheng Wang, Online Task Assignment for Crowdsensing in Predictable Mobile Social Networks IEEE Transactions on Mobile Computing. ,vol. 16, pp. 2306- 2320 ,(2017) , 10.1109/TMC.2016.2616473
Shuo Yang, Fan Wu, Shaojie Tang, Xiaofeng Gao, Bo Yang, Guihai Chen, On Designing Data Quality-Aware Truth Estimation and Surplus Sharing Method for Mobile Crowdsensing IEEE Journal on Selected Areas in Communications. ,vol. 35, pp. 832- 847 ,(2017) , 10.1109/JSAC.2017.2676898
Kazushi Ikeda, Keiichiro Hoashi, Crowdsourcing GO: Effect of Worker Situation on Mobile Crowdsourcing Performance human factors in computing systems. pp. 1142- 1153 ,(2017) , 10.1145/3025453.3025917
Sabrina Klos nee Muller, Cem Tekin, Mihaela van der Schaar, Anja Klein, Context-Aware Hierarchical Online Learning for Performance Maximization in Mobile Crowdsourcing IEEE/ACM Transactions on Networking. ,vol. 26, pp. 1334- 1347 ,(2018) , 10.1109/TNET.2018.2828415