Proximal Renal Tubular Acidosis

作者: Peter S. Aronson , Gerhard Giebisch

DOI: 10.1016/B978-0-12-449851-8.00011-5

关键词:

摘要: Proximal renal tubular acidosis (pRTA) is a disease of defective proximal tubule function resulting in metabolic acidosis. This chapter will review the transport processes for acid-base equivalents tubule, clinical features pRTA, and specific molecular defects that can give rise to pRTA. Two mechanisms contribute bicarbonate exit across basolateral membrane cells, namely Na + -HCO 3 ¯ cotransport Cl exchange. predominant mechanism through most length (S1 S2), whereas -CO important S3 segment. A :HCO stoichiometry 1:3 required transporter mediate net HCO efflux cells. Therefore, regulatory change from 1:2 would be expected direction outward inward thereby impede reabsorption. The pRTA defined as hyperchloremic due defect capacity nephron In patient with there greatly reduced threshold plasma at which appears urine, maximal rate reabsorption markedly depressed. principal cause isolated base predicted lead relative alkalinization intracellular pH Such tend mitigate effects systemic maintain citrate excretion higher level than observed distal RTA (dRTA).

参考文章(119)
F. Yesim K. Demirci, Tammy S. Mah, Michael B. Gorin, Min Hwang Chang, Michael F. Romero, Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Molecular Vision. ,vol. 12, pp. 324- 330 ,(2006)
Raymond Quigley, Proximal renal tubular acidosis. Journal of Nephrology. ,vol. 19, ,(2006)
Patrick J. Schultheis, Lane L. Clarke, Pierre Meneton, Marian L. Miller, Manoocher Soleimani, Lara R. Gawenis, Tara M. Riddle, John J. Duffy, Thomas Doetschman, Tong Wang, Gerhard Giebisch, Peter S. Aronson, John N. Lorenz, Gary E. Shull, Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger Nature Genetics. ,vol. 19, pp. 282- 285 ,(1998) , 10.1038/969
Zoubida Karim, Marta Szutkowska, Catherine Vernimmen, Maurice Bichara, Renal handling of NH3/NH4+: recent concepts. Nephron Physiology. ,vol. 101, pp. 77- 81 ,(2005) , 10.1159/000087575
M Soleimani, P S Aronson, Ionic mechanism of Na+-HCO3− cotransport in rabbit renal basolateral membrane vesicles Journal of Biological Chemistry. ,vol. 264, pp. 18302- 18308 ,(1989) , 10.1016/S0021-9258(18)51463-0
L G Brenes, M I Sanchez, Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis. Journal of The American Society of Nephrology. ,vol. 4, pp. 1073- 1078 ,(1993) , 10.1681/ASN.V441073
Masaaki Shiohara, Takashi Igarashi, Tetsuo Mori, Atsushi Komiyama, Genetic and long-term data on a patient with permanent isolated proximal renal tubular acidosis European Journal of Pediatrics. ,vol. 159, pp. 892- 894 ,(2000) , 10.1007/PL00008363
Bernardo V. Alvarez, Frederick B. Loiselle, Claudiu T. Supuran, George J. Schwartz, Joseph R. Casey, Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochemistry. ,vol. 42, pp. 12321- 12329 ,(2003) , 10.1021/BI0353124
Ashley M. Toye, Mark D. Parker, Christopher M. Daly, Jing Lu, Leila V. Virkki, Marc F. Pelletier, Walter F. Boron, The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. American Journal of Physiology-cell Physiology. ,vol. 291, ,(2006) , 10.1152/AJPCELL.00094.2006
Roger A.L. Sutton, Norman L.M. Wong, John H. Dirks, Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney Kidney International. ,vol. 15, pp. 520- 533 ,(1979) , 10.1038/KI.1979.67