Safely Caching HOG Pyramid Feature Levels, to Speed up Facial Landmark Detection

作者: Gareth Higgins , Ling Guan , Azhar Quddus , Ali Shahidi Zandi

DOI: 10.1007/978-3-030-27202-9_32

关键词:

摘要: A problem in object detection is finding the scale of interest, which often solved by multi-scale analysis. One drawbacks analysis that all scales are weighted equally important. We extend [7] to video data, using our method caches Histogram Oriented Graidents (HOG) feature levels. Utilizing a Bayesian Network (Bayes Net) discover policy for when partial or full pyramid updates required prevent loss tracking. Without sacrificing significant accuracy from original implementation.

参考文章(6)
Lior Wolf, Tal Hassner, Itay Maoz, Face recognition in unconstrained videos with matched background similarity CVPR 2011. pp. 529- 534 ,(2011) , 10.1109/CVPR.2011.5995566
Xiangxin Zhu, D. Ramanan, Face detection, pose estimation, and landmark localization in the wild computer vision and pattern recognition. pp. 2879- 2886 ,(2012) , 10.1109/CVPR.2012.6248014
Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, Louis-Philippe Morency, OpenFace 2.0: Facial Behavior Analysis Toolkit ieee international conference on automatic face gesture recognition. pp. 59- 66 ,(2018) , 10.1109/FG.2018.00019
Ali Farhadi, Joseph Redmon, YOLO9000: Better, Faster, Stronger arXiv: Computer Vision and Pattern Recognition. ,(2016)
Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman, Rogerio Feris, BlockDrop: Dynamic Inference Paths in Residual Networks 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8817- 8826 ,(2018) , 10.1109/CVPR.2018.00919
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection computer vision and pattern recognition. pp. 779- 788 ,(2016) , 10.1109/CVPR.2016.91