Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

作者: Gilles Louppe , Kyle Cranmer , Juan Pavez

DOI:

关键词:

摘要: In many fields of science, generalized likelihood ratio tests are established tools for statistical inference. At the same time, it has become increasingly common that a simulator (or generative model) is used to describe complex processes tie parameters $\theta$ an underlying theory and measurement apparatus high-dimensional observations $\mathbf{x}\in \mathbb{R}^p$. However, often do not provide way evaluate function given observation $\mathbf{x}$, which motivates new class likelihood-free inference algorithms. this paper, we show ratios invariant under specific dimensionality reduction maps $\mathbb{R}^p \mapsto \mathbb{R}$. As direct consequence, discriminative classifiers can be approximate statistic when only model data available. This leads machine learning-based approach complementary Approximate Bayesian Computation, does require prior on parameters. Experimental results artificial problems with known exact likelihoods illustrate potential proposed method.

参考文章(25)
Taiji Suzuki, Masashi Sugiyama, Takafumi Kanamori, Density Ratio Estimation in Machine Learning ,(2012)
Lorenzo Moneta, George Lewis, Kyle Cranmer, Wouter Verkerke, Akira Shibata, HistFactory: A tool for creating statistical models for use with RooFit and RooStats ,(2012)
Matthias Krauledat, Klaus-Robert Müller, Masashi Sugiyama, Covariate Shift Adaptation by Importance Weighted Cross Validation Journal of Machine Learning Research. ,vol. 8, pp. 985- 1005 ,(2007)
Igor Volobouev, Matrix Element Method in HEP: Transfer Functions, Efficiencies, and Likelihood Normalization arXiv: Data Analysis, Statistics and Probability. ,(2011)
Georges Aad, Tatevik Abajyan, Brad Abbott, Jalal Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, Alejandro Alonso, F Alonso, A Altheimer, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, SP Amor Dos Santos, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, M-L Andrieux, XS Anduaga, S Angelidakis, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, M Aoki, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, J-F Arguin, E Arik, M Arik, AJ Armbruster, O Arnaez, V Arnal, C Arnault, A Artamonov, G Artoni, D Arutinov, S Asai, S Ask, B Åsman, L Asquith, K Assamagan, A Astbury, M Atkinson, B Aubert, E Auge, K Augsten, M Aurousseau, G Avolio, R Avramidou, D Axen, G Azuelos, Y Azuma, MA Baak, G Baccaglioni, C Bacci, AM Bach, H Bachacou, K Bachas, M Backes, M Backhaus, J Backus Mayes, E Badescu, P Bagnaia, S Bahinipati, Y Bai, DC Bailey, T Bain, JT Baines, OK Baker, MD Baker, S Baker, P Balek, E Banas, P Banerjee, Sw Banerjee, D Banfi, A Bangert, V Bansal, HS Bansil, None, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC Physics Letters B. ,vol. 716, pp. 1- 29 ,(2012) , 10.1016/J.PHYSLETB.2012.08.020
M. Baak, S. Gadatsch, R. Harrington, W. Verkerke, Interpolation between multi-dimensional histograms using a new non-linear moment morphing method Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 771, pp. 39- 48 ,(2015) , 10.1016/J.NIMA.2014.10.033
Jerome Friedman, Trevor Hastie, Robert Tibshirani, Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) Annals of Statistics. ,vol. 28, pp. 337- 407 ,(2000) , 10.1214/AOS/1016218223
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)