Belief propagation and loop series on planar graphs

作者: Razvan Teodorescu , Michael Chertkov , Vladimir Y Chernyak

DOI: 10.1088/1742-5468/2008/05/P05003

关键词:

摘要: We discuss a generic model of Bayesian inference with binary variables defined on edges planar graph. The Loop Calculus approach Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for partition function. show that, graphs, truncating at single-connected loops reduces, via map reminiscent Fisher transformation (Fisher 1961 124 1664), evaluating function dimer-matching an auxiliary Thus, truncated can be easily re-summed, using Pfaffian formula Kasteleyn (1961 Physics 27 1209). This allows us identify big class computationally tractable models reducible dimer Belief Propagation (gauge) transformation. representation also extended full Series, in which case becomes sum contributions, each associated matchings extension subgraph original Algorithmic consequences representation, as well relations quantum non-planar models, are discussed.

参考文章(48)
Aleksandr Aleksandrovich Kirillov, F. A. Berezin, Introduction to Superanalysis ,(1987)
A. Honecker, M. Picco, P. Pujol, Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model Physical Review Letters. ,vol. 87, pp. 047201- ,(2001) , 10.1103/PHYSREVLETT.87.047201
Itai Arad, Zeph Landau, Dorit Aharonov, Elad Eban, Polynomial Quantum Algorithms for Additive approximations of the Potts model and other Points of the Tutte Plane arXiv: Quantum Physics. ,(2007)
Michael Chertkov, Mikhail Stepanov, Pseudo-codeword Landscape international symposium on information theory. pp. 1546- 1550 ,(2007) , 10.1109/ISIT.2007.4557442
Michael Chertkov, Vladimir Y. Chernyak, Loop Calculus Helps to Improve Belief Propagation and Linear Programming Decodings of Low-Density-Parity-Check Codes allerton conference on communication, control, and computing. ,(2006)
C. Amoruso, A. K. Hartmann, M. B. Hastings, M. A. Moore, Conformal invariance and stochastic Loewner evolution processes in two-dimensional Ising spin glasses. Physical Review Letters. ,vol. 97, pp. 267202- 267202 ,(2006) , 10.1103/PHYSREVLETT.97.267202
S F Edwards, P W Anderson, Theory of spin glasses Journal of Physics F: Metal Physics. ,vol. 5, pp. 965- 974 ,(1975) , 10.1088/0305-4608/5/5/017
Riccardo Zecchina, Tullio Regge, Exact solution of the Ising model on group lattices of genus g>1 Journal of Mathematical Physics. ,vol. 37, pp. 2796- 2814 ,(1996) , 10.1063/1.531690
Michael Chertkov, Vladimir Y Chernyak, Loop series for discrete statistical models on graphs Journal of Statistical Mechanics: Theory and Experiment. ,vol. 2006, pp. P06009- P06009 ,(2006) , 10.1088/1742-5468/2006/06/P06009