Stochastic barriers for the Wiener process and a mathematical model

作者: Chull Park

DOI: 10.1007/BFB0096264

关键词:

摘要: Let {W(t), 0≤t p0≤t≤TW(t)−[f(t)+X(t)]≧0 when X(t) is a stochastic process. By taking compound Poisson process as X(t), an interesting mathematical model created.

参考文章(9)
Chull Park, S. R. Paranjape, Probabilities of Wiener paths crossing differentiable curves. Pacific Journal of Mathematics. ,vol. 53, pp. 579- 583 ,(1974) , 10.2140/PJM.1974.53.579
J. L. Doob, Heuristic Approach to the Kolmogorov-Smirnov Theorems Annals of Mathematical Statistics. ,vol. 20, pp. 393- 403 ,(1949) , 10.1214/AOMS/1177729991
John A. Beekman, Clinton P. Fuelling, Refined distributions for a multi-risk stochastic process Scandinavian Actuarial Journal. ,vol. 1977, pp. 175- 183 ,(1977) , 10.1080/03461238.1977.10405638
Ronald Pyke, THE SUPREMUM AND INFIMUM OF THE POISSON PROCESS Annals of Mathematical Statistics. ,vol. 30, pp. 568- 576 ,(1959) , 10.1214/AOMS/1177706269
C. Park, F. J. Schuurmann, Evaluations of barrier-crossing probabilities of Wiener paths Journal of Applied Probability. ,vol. 13, pp. 267- 275 ,(1976) , 10.1017/S002190020009433X
C. Park, F. J. Schuurmann, Evaluations of absorption probabilities for the Wiener process on large intervals Journal of Applied Probability. ,vol. 17, pp. 363- 372 ,(1980) , 10.2307/3213026
Joseph L. Doob, Stochastic processes ,(1953)