The differential form spectrum of hyperbolic space

作者: Harold Donnelly

DOI: 10.1007/BF01798234

关键词:

摘要: Let Hn+1 denote the simply connected complete space of constant curvature −1. The Laplacian Δ, acting on square integrable p-forms H, is identified up to unitary equivalence.

参考文章(13)
Shing-Tung Yau, Isoperimetric constants and the first eigenvalue of a compact riemannian manifold Annales Scientifiques De L Ecole Normale Superieure. ,vol. 8, pp. 487- 507 ,(1975) , 10.24033/ASENS.1299
H. P. McKean, An upper bound to the spectrum of $\Delta $ on a manifold of negative curvature Journal of Differential Geometry. ,vol. 4, pp. 359- 366 ,(1970) , 10.4310/JDG/1214429509
Richard L. Bishop, Richard J. Crittenden, Geometry of Manifolds ,(1964)
J. Cheeger, On the spectral geometry of spaces with cone-like singularities Proceedings of the National Academy of Sciences of the United States of America. ,vol. 76, pp. 2103- 2106 ,(1979) , 10.1073/PNAS.76.5.2103
Paul R Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations Journal of Functional Analysis. ,vol. 12, pp. 401- 414 ,(1973) , 10.1016/0022-1236(73)90003-7
Jozef Dodziuk, L^2-harmonic forms on rotationally symmetric Riemannian manifolds Proceedings of the American Mathematical Society. ,vol. 77, pp. 395- 400 ,(1979) , 10.1090/S0002-9939-1979-0545603-8
Mark A. Pinsky, Spectrum of the Laplacian on a manifold of negative curvature. II Journal of Differential Geometry. ,vol. 14, pp. 609- 620 ,(1979) , 10.4310/JDG/1214435241
Earl A. Coddington, Norman Levinson, Theory of Ordinary Differential Equations ,(1955)
S. T. KURODA, Scattering theory for differential operators, I, operator theory Journal of The Mathematical Society of Japan. ,vol. 25, pp. 75- 104 ,(1973) , 10.2969/JMSJ/02510075
Mark A. Pinsky, The spectrum of the Laplacian on a manifold of negative curvature. I Journal of Differential Geometry. ,vol. 13, pp. 87- 91 ,(1978) , 10.4310/JDG/1214434349