Bi-quasi-Hamiltonian systems

作者: M. Crampin , W. Sarlet

DOI: 10.1063/1.1462856

关键词:

摘要: A general notion of bi-quasi-Hamiltonian systems is introduced and related to previous work on various special cases such systems.

参考文章(22)
M Crampin, W Sarlet, G Thompson, Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors Journal of Physics A. ,vol. 33, pp. 8755- 8770 ,(2000) , 10.1088/0305-4470/33/48/313
C Morosi, G Tondo, On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian Physics Letters A. ,vol. 247, pp. 59- 64 ,(1998) , 10.1016/S0375-9601(98)00543-X
M. Crampin, W. Sarlet, A class of nonconservative Lagrangian systems on Riemannian manifolds Journal of Mathematical Physics. ,vol. 42, pp. 4313- 4326 ,(2001) , 10.1063/1.1388030
Krzysztof Marciniak, Stefan Rauch-Wojciechowski, Two families of nonstandard Poisson structures for Newton equations Journal of Mathematical Physics. ,vol. 39, pp. 5292- 5306 ,(1998) , 10.1063/1.532571
J -M Sparenberg, D Baye, Supersymmetric transformations of real potentials on the line Journal of Physics A. ,vol. 28, pp. 5079- 5095 ,(1995) , 10.1088/0305-4470/28/17/033
R Brouzet, R Caboz, J Rabenivo, V Ravoson, Two degrees of freedom quasi-bi-Hamiltonian systems Journal of Physics A. ,vol. 29, pp. 2069- 2076 ,(1996) , 10.1088/0305-4470/29/9/019
C Morosi, G Tondo, Quasi-bi-Hamiltonian systems and separability Journal of Physics A. ,vol. 30, pp. 2799- 2806 ,(1997) , 10.1088/0305-4470/30/8/023
F. Magri, C. Morosi, O. Ragnisco, Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications Communications in Mathematical Physics. ,vol. 99, pp. 115- 140 ,(1985) , 10.1007/BF01466596